
JAVA MIDDLEWARE4GRID: MINI WORKSHOP 2007 1

An overview on public resources computers:
BOINC
Linda Ponta

Abstract—BOINC (Berkeley Open Infrastructure for Net-
work Computing) is a middleware system for volunteer
computing. This software system makes easy for scientists
to create and operate public-resource computing projects.
BOINC supports diverse applications, including those with
large storage or communication requirements. PC owners
can participate in multiple BOINC projects, and can spec-
ify how their resources are allocated among these projects.
BOINC provides a feature called homogeneous redundancy
and a mechanism of credit and accounting to control erro-
neous computational results due to malfunctioning comput-
ers or to malicious participants. In this paper it is described
the design issues, the goals of BOINC, and the solutions to
the main problems.

Index Terms—Public-resource computing, homogeneous
redundancy

I. Public-Resource Computing

The worlds computing power and disk space is no longer
primarily concentrated in supercomputer centers and ma-
chine rooms. Instead it is distributed in hundreds of mil-
lions of personal computers and game consoles belonging
to the general public. Public-resource computing (also
known as Global Computing or Peer-to-peer computing )
uses these resources to do scientific supercomputing. This
paradigm enables previously infeasible research. It also
encourages public awareness of current scientific research,
it catalyzes global communities centered around scientific
interests, and it gives the public a measure of control over
the directions of scientific progress. The idea of using the
millions of fast computers, connected by the network, as
a parallel supercomputer occurred to many people inde-
pendently. Two projects of this type emerged in 1997:
GIMPS, which searched for large prime numbers, and Dis-
tributed.net, which deciphers encrypted messages. In 1999
a third projects, seti@home [1], was launched, with the goal
of detecting radio signals emitted by intelligent civiliza-
tions outside Earth. Seti@home acts as a ”screensaver”,
running only when the PC is idle, and providing a graph-
ical view of the work being done. SETI@home has at-
tracted millions of participants worldwide. The number of
Internet-connected PCs is growing rapidly, and is projected
to reach 1 billion by 2015. Together, these PCs could pro-
vide many PetaFLOPs of computing power. The public
resource approach applies to storage as well as computing.
If 100 million computer users each provide 10 Gigabytes
of storage, the total (one Exabyte, or 1018 bytes) would
exceed the capacity of any centralized storage system. In
spite of this resource, and an abundance of promising appli-
cations, relatively few large-scale public-resource projects
have emerged. This is due in part to the lack of appropri-
ate middleware (client and server software, management
tools, user-centered web features, and so on). Some open-
source systems have been developed, such as Cosm, jxta,

and XtremWeb [2], but these systems provide only part of
the necessary functionality. Commercial systems such as
Entropia [3] and United Devices are more full-featured but
not free.

II. BOINC

BOINC (Berkeley Open Infrastructure for Network
Computing) is a platform for public-resource distributed
computing. BOINC is being developed at U.C. Berkeley
Spaces Sciences Laboratory by the group that developed
and continues to operate SETI@home. BOINC is open
source and is available at http://boinc.berkeley.edu. It is
being used for applications in physics, molecular biology,
medicine, chemistry, astronomy, climate dynamics, math-
ematics, and the study of games. There are currently
about 40 BOINCbased projects and about 400,000 vol-
unteer computers performing an average of over 400 Ter-
aFLOPS. BOINC projects are independent; each has its
own database of jobs and volunteer accounts. Job dura-
tions vary widely between projects, ranging from a few
minutes to several months (for example, Climatepredic-
tion.net [4]). Volunteers participate by running BOINC
client software on their computers (hosts). BOINC is open
source and the client is available for most platforms, includ-
ing Windows, Linux, and Mac OS X. Volunteers can attach
each host to any set of projects, and can specify various
preferences that constrain when and how their resources
are used. For example, they can control the allocation of
resources among projects. There are advantages in attach-
ing hosts to multiple projects. First, a given project may
have periods when it has no work, so a host attached to
several projects is less likely to become idle. Second, such
a host may be able to do use its resource more fully, for
example by downloading files for one project while com-
puting for another.

III. The BOINC architecture

BOINC consists of client and server components (see
Figure 1). The BOINC client runs projects’ applications.
The applications are linked with a runtime system whose
functions include process control, checkpoint control, and
graphics [5]. The client performs CPU scheduling (imple-
mented on top of the local operating system’s scheduler; at
the OS level, BOINC runs applications at zero priority). It
may preempt applications either by suspending them (and
leaving them in memory) or by instructing them to quit.
All network communication in BOINC is initiated by the
client. A client communicates with a project’s task server
[6] via HTTP. The request is an XML document that in-
cludes a description of the host hardware and availability,
a list of completed jobs, and a request for a certain amount



2 JAVA MIDDLEWARE4GRID: MINI WORKSHOP 2007

(expressed in terms of CPU time) of additional work. The
reply message includes a list of new jobs (each described by
an XML element that lists the application, input and out-
put files, including a set of data servers from which each file
can be downloaded). Some hosts have intermittent physi-
cal network connections (for example, portable computers
or those with modem connections). Such computers may
connect only every few days. During a period of network
connection, BOINC attempts to download enough work to
keep the computer busy until the next connection.

A. The BOINC server

BOINC-based projects are autonomous. Each project
operates a server consisting of several components:
• Web interfaces for account and team management,

message boards, and other features.
• A task server that creates tasks, dispatches them to

clients, and processes returned tasks.
• A data server that downloads input files and executa-

bles, and that uploads output files.
These components share various data stored on disk, in-
cluding relational databases and upload/download files(see
Figure 1).

B. The BOINC client

The BOINC client software consists of several compo-
nents (see Figure 1):
• Applications are typically long-running scientific pro-

grams. They may consist of a single process or a dy-
namic set of multiple processes.

• The BOINC core client program communicates with
schedulers, uploads and downloads files, and executes
and coordinates applications.

• The BOINC Manager provides a graphical interface
allowing users to view and control computation sta-
tus. For each task, it shows the fraction done and the
estimated time to completion, and lets the user open
a window showing the applications graphics. It com-
municates with the core client using remote procedure
calls over TCP.

• A BOINC screensaver (if enabled by the volunteer)
runs when the computer is idle. It does not generate
screensaver graphics itself, but rather communicates
with the core client, requesting that one of the running
applications display full-screen graphics.

The core client schedules applications. On a multiproces-
sor with n CPUs, it attempts (if user preferences allow it)
to run n applications at once. It does preemptive round
robin scheduling among applications, so that volunteers
who participate in multiple projects see periodic change.
Applications that are preempted may be suspended or
forced to exit, depending on volunteer preferences. The
core client also guards against certain types of applica-
tion misbehavior. Each task has project-specified limits
on memory usage, disk usage, and computation (number
of floating-point operations). The runtime system peri-
odically measures these quantities and reports them to the
core client. If the limits are exceeded, the core client aborts

the application. The core client interacts with applications
in various ways. This interaction is implemented by a run-
time system implemented by the core client and a runtime
library linked with applications. Most of this interaction is
hidden from the application developer. In cases where the
developer needs to be involved, this is done via a BOINC
Application Programming Interface (API).

IV. Design issues and solutions

A. Describing computation and data

BOINC uses a simple but rich set of abstractions for
files, applications, and data. A project defines applica-
tion versions for various platforms (Windows, Linux/x86,
Mac OS/X, etc.). An application can consist of an arbi-
trary set of files. A workunit represents the inputs to a
computation: the application (but not a particular ver-
sion) a set of references input files, and sets of command-
line arguments and environment variables. Each workunit
has parameters such as compute, memory and storage re-
quirements and a soft deadline for completion. A result
represents the result of a computation: it consists of a
reference to a workunit and a list of references to output
files. Files (associated with application versions, worku-
nits, or results) have project-wide unique names and are
immutable. Files can be replicated: the description of a
file includes a list of URLs from which it may be down-
loaded or uploaded. Files can have associated attributes
indicating, for example, that they should remain resident
on a host after their initial use, that they must be validated
with a digital signature, or that they must be compressed
before network transfer. When the BOINC client com-
municates with a scheduling server it reports completed
work, and receives an XML document describing a collec-
tion of the above entities. The client then downloads and
uploads files and runs applications; it maximizes concur-
rency, using multiple CPUs when possible and overlapping
communication and computation. BOINCs computational
system also provides a distributed storage facility (of com-
putational inputs or results, or of data not related to dis-
tributed computation) as a byproduct. This storage fa-
cility is much different from peer-to-peer storage systems
such as Gnutella, PAST [7] and Oceanstore [8]. In these
systems, files can be created by any peer, and there is no
central database of file locations. This leads to a set of
technical problems (e.g. naming and file location) that are
not present in the BOINC facility.

B. Redundant computing

Public-resource computing projects must deal with erro-
neous computational results. These results arise from mal-
functioning computers (typically induced by overclocking)
and occasionally from malicious participants. BOINC pro-
vides support for redundant computing, a mechanism for
identifying and rejecting erroneous results. A project can
specify that N results should be created for each workunit.
Once M ≤ N of these have been distributed and completed,
an application-specific function is called to compare the re-



PONTA: AN OVERVIEW ON PUBLIC RESOURCES COMPUTERS: BOINC 3

sults and possibly select a canonical result. If no consensus
is found, or if results fail, BOINC creates new results for
the workunit, and continues this process until either a max-
imum result count or a timeout limit is reached. Malicious
participants can potentially game the system by obtaining
large numbers of results and detecting groups of results
that comprise a quorum. BOINC makes this difficult by
a work-distribution policy that sends only at most one re-
sult of a given workunit to a given user. Projects can also
limit the total number of results sent to a given host per
day. BOINC implements redundant computing using sev-
eral server daemon processes:

• The transitioner implements the redundant computing
logic: it generates new results as needed and identifies
error conditions.

• The validater examines sets of results and selects
canonical results. It includes an application-specific
result-comparison function.

• The assimilater handles newly-found canonical results.
Includes an application-specific function which typi-
cally parses the result and inserts it into a science
database.

• The file deleter deletes input and output files from
data servers when they are no longer needed.

In this architecture servers and daemons can run on dif-
ferent hosts and can be replicated, so BOINC servers are
scalable. Availability is enhanced because some daemons
can run even while parts of the project are down (for ex-
ample, the scheduler server and transitioner can operate
even if the science database is down). Some numerical ap-
plications produce different outcomes for a given workunit
depending on the machine architecture, operating system,
compiler, and compiler flags. In such cases it may be dif-
ficult to distinguish between results that are correct but
differ because of numerical variation, and results that are
erroneous. BOINC provides a feature called homogeneous
redundancy for such applications. When this feature is en-
abled, the BOINC scheduler send results for a given worku-
nit only to hosts with the same operation system name and
CPU vendor. In this case, strict equality can be used to
compare results. BOINC is compatible with other schemes
for ensuring result correctness [9].

C. Failure and backoff

Public-resource computing projects may have millions
of participants and a relatively modest server complex. If
all the participants simultaneously try to connect to the
server, a disastrous overload condition will generally de-
velop. BOINC has a number of mechanisms to prevent
this. All client/server communication uses exponential
backoff in the case of failure. Thus, if a BOINC server
comes up after an extended outage, its connection rate will
be the longterm average. The exponential backoff scheme
is extended to computational errors as well. If, for some
reason, an application fails immediately on a given host,
the BOINC client will not repeatedly contact the server;
instead, it will delay based on the number of failures.

D. Participant preferences

Computer owners generally participate in distributed
computing projects only if they incur no significant in-
convenience, cost, or risk by doing so. BOINC lets par-
ticipants control how and when their resources are used.
Using these controls, called general preferences, partici-
pants specify the hysteresis limits of work buffering on ma-
chines (which determines the frequency of network activ-
ity); whether BOINC can do work while mouse/keyboard
input is active; during what hours can BOINC do work;
how much disk space can BOINC use; how much network
bandwidth can BOINC use; and so on. These preferences
are edited via a web interface, and are propagated to all
hosts attached to the account. Participants can create sep-
arate sets of preferences for computers at home, work, and
school. Some non-obvious controls are important to cer-
tain classes of participants. For example, DSL service in
some countries has monthly transfer limits (typically a few
hundred MB). BOINC provides a preference for upload,
download and combined transfer limits over arbitrary pe-
riods. Some BOINC-based applications perform computa-
tions that are so floating-point intensive that they cause
CPU chips to overheat. BOINC allows users to specify a
duty cycle for such applications on a given CPU.

E. Credit and accounting

BOINC provides an accounting system in which there is
a single unit of ”credit”, a weighted combination of com-
putation, storage, and network transfer. This can be me-
tered in various ways. By default, the BOINC client runs
benchmarks on each CPU, and a results ”claimed credit”
is based on this benchmark and elapsed CPU time. Credit
”cheating” is made difficult using the redundancy mecha-
nism described above: Each result claims a certain amount
of credit, but is granted only the average or minimum (the
policy is project-specificed) of the claimed credit of cor-
rect results. Our experience with SETI@home has shown
that participants are highly motivated by credit, and are
particularly interested in their ranking relative to other
users. This information is typically displayed on web-
based ”leaderboards” showing the ranking of participants
or teams of participants. There are many ways in which
leaderboards can be subdivided, filtered, ordered, and dis-
played. For example, a leaderboard might show only par-
ticipants from a particular country, or only those using a
single PC; and it might rank entities by total or recent av-
erage credit. Rather than supply all these views, BOINC
provides a mechanism that exports credit-related data (at
the level of participant, team, and host) in XML files that
can be downloaded and processed by credit statistics sites
operated by third parties. Several of these currently ex-
ist. As part of the accounting system, BOINC provides
a cross-project identification mechanism that allows ac-
counts on different projects with the same email address
to identified, in a way that does not allow email addresses
to be inferred. This mechanism allows leaderboard sites
to display credit statistics summed over multiple BOINC-
based projects. Participants demand immediate gratifica-



4 JAVA MIDDLEWARE4GRID: MINI WORKSHOP 2007

tion; they want to see their credit totals increase at least
daily. Thus projects with long workunits (such as the cli-
mate prediction projects) need to grant credit incremen-
tally as the workunit is being processed. BOINC offers a
trickle messages mechanism, providing bidirectional, asyn-
chronous, reliable, ordered messages, piggybacked onto the
regular client/server RPC traffic. This can be used to con-
vey credit or to report a summary of computational state;
in the latter case, reply messages can abort wayward com-
putations.

F. User community features

BOINC provides participant-oriented web sites features
such as the ability to form teams, the ability to create
and browse ”user profiles” including text and images and
message boards, including a dynamic FAQ system that
encourages participants to answer each others questions.
These facilities are integrated with the accounting system:
credit and seniority provide a form of reputation system
[10]. These features are important in attracting and retain-
ing participants, and in providing a ”customer support”
mechanism that consumes little project resources.

G. Handling large numbers of platforms

Although the bulk of public computing resources use
the Windows/Intel platform, there are many other plat-
forms, far more than can easily be accessed by a typical
project. BOINC provides a flexible and novel framework
for distributing application executables. Normally, these
are compiled and distributed by the project itself, for a
given set of platforms (those accessible to the project).
This mechanism is fine for most participants, but its inad-
equate for participants who, for security reasons, want to
only run executables they have compiled themselves, par-
ticipants whose computers have platforms not supported
by the project and participants who want to optimize ap-
plications for particular architectures. To meet these needs
BOINC provides an anonymous platform mechanism, us-
able with projects that make their application source code
available. Participants can download and compile the ap-
plication source code (or obtain executables from a third-
party source) and, via an XML configuration file, inform
the BOINC client of these application versions. Then,
when the client communicates with that projects server,
it indicates that its platform is ”anonymous” and supplies
a list of available application versions; the server supplies
workunits (but not application versions) accordingly.

H. Local scheduling

The BOINC core client, in its decisions of when to get
work and from what project, and what tasks to execute at
a given point, implements a local scheduling policy. This
policy has several goals:
• To maximize resource usage (i.e. to keep all processors

busy);
• To satisfy result deadlines;
• To respect the participants resource share allocation

among projects;

• To maintain a minimal variety among projects. This
goal stems from user perception in the presence of long
workunits.

Participants will become bored or confused if they have
registered for several projects and see only one project
running for several months. The core client implements
a scheduling policy, based on a dynamic ”resource debt”
to each project, that is guided by these goals.

V. Projects using BOINC

A number of public-resource computing projects are
using BOINC. The requirements of these projects have
shaped the design of BOINC.

SETI@home A continuation of the original SETI@home
project [1], performs digital signal processing of ra-
dio telescope data from the Arecibo radio observa-
tory. A BOINC-based version of this project has
been developed, and we are currently shifting the
existing SETI@home user base (over 500,000 ac-
tive participants) to the BOINC-based version. The
BOINCbased SETI@home will use client disks to
archive data, eliminating the need for its central tape
archive.

Predictor@home [11] This project, based at The Scripps
Research Institute, studies protein behavior using
CHARMM, a FORTRAN program for macromolecu-
lar dynamics and mechanics. It is operational within
Scripps, and is being readied for a public launch.

Folding@home [12] This project is based at Stanford
University. It studies protein folding, misfolding, ag-
gregation, and related diseases. It uses novel compu-
tational methods and distributed computing to simu-
late time scales thousands to millions of times longer
than previously achieved. A BOINC-based project
has been implemented and is being tested.

Climateprediction.net [4]The aim of this project (based
at Oxford University) is to quantify and reduce the
uncertainties in long-term climate prediction based on
computer simulations. This is accomplished by run-
ning large numbers of simulations with varying forc-
ing scenarios (initial and boundary conditions, includ-
ing natural and manmade components) and internal
model parameters. The Climateprediction.net appli-
cation (a million-line FORTRAN program) produces
a 2 GB detailed output file for each 50-year simulation
run (which takes about 3 PC-months). These output
files need to be uploaded and examined in a small frac-
tion of cases - for example, when the smaller summary
output file indicates a possible bug in the model.

Climate@home. This project is a collaboration of re-
searchers at NCAR, MIT, UCAR, Rutgers, Lawrence
Berkeley Lab, and U.C. Berkeley. Its scientific goals
are similar to those of Climateprediction.net, but it
will be using the NCAR Community Climate System
Model (CCSM). It will collaborate with Climatepre-
diction.net to maximize compatibility and minimize
redundant effort, and to enable a systematic compar-
ison of different climate models.



PONTA: AN OVERVIEW ON PUBLIC RESOURCES COMPUTERS: BOINC 5

CERN projects. CERN (in Geneva, Switzerland) is de-
ploying a BOINC-based project on 1,000 in-house
PCs. The projects current application is a FORTRAN
program that simulates the behavior of the LHC
(Large Hadron Collider) as a function of the param-
eters of individual superconducting magnets. CERN
researchers are investigating other applications.

Einstein@home This project involves researchers from
University of Wisconsin, U.C. Berkeley, California In-
stitute of Technology, LIGO Hanford Observatory,
University of Glasgow, and the Albert Einstein In-
stitute. Its purpose is to detect certain types of grav-
itational waves, such as those from spinning neutron
stars, that can be detected only by using highly se-
lective filtering techniques that require extreme com-
puting power. It will analyze data from the Laser In-
terferometry Gravitational Observatory (LIGO) and
the British/German GEO6000 gravitational wave de-
tector.

UCB/Intel study of Internet resources. This project, a
collaboration between researchers at the U.C. Berke-
ley Computer Sciences Department and the Intel
Berkeley Research Laboratory, seeks to study the
structure and performance of the consumer Internet,
together with the performance, dependability and us-
age characteristics of home PCs, in an effort to un-
derstand what resources are available for peer-to-peer
services. This project need to perform actions at spe-
cific times of day, or in certain time ranges. While
performing these actions other BOINC applications
must be suspended. The BOINC API supports these
requirements.

VI. Contrast with Grid computing

Public-resource computing and Grid computing share
the goal of better utilizing existing computing resources.
However, there are profound differences between the two
paradigms, and it is unlikely that current Grid middleware
[13] will be suitable for public-resource computing. Grid
computing involves organizationally-owned resources: su-
percomputers, clusters, and PCs owned by universities, re-
search labs, and companies. These resources are centrally
managed by IT professionals, are powered on most of the
time, and are connected by full-time, high-bandwidth net-
work links. There is a symmetric relationship between or-
ganizations: each one can either provide or use resources.
Malicious behavior such as intentional falsification of re-
sults would be handled outside the system, e.g. by fir-
ing the perpetrator. In contrast, public resource comput-
ing involves an asymmetric relationship between projects
and participants. Projects are typically small academic
research groups with limited computer expertise and man-
power. Most participants are individuals who own Win-
dows, Macintosh and Linux PCs, connected to the Internet
by telephone or cable modems or DSL, and often behind
network-address translators (NATs) or firewalls. The com-
puters are frequently turned off or disconnected from the
Internet. Participants are not computer experts, and par-

ticipate in a project only if they are interested in it and
receive ”incentives” such as credit and screensaver graph-
ics. Projects have no control over participants, and cannot
prevent malicious behavior. Accordingly there are different
requirements on middleware for public resource computing
than for Grid computing. For example, BOINCs features
such as redundant computing, cheat-resistant accounting,
and support for user-configurable application graphics are
not necessary in a Grid system. Conversely, Grid com-
puting has many requirements that public-resource com-
puting does not. A Grid architecture must accommodate
many existing commercial and research-oriented academic
systems, and must provide a general mechanism for re-
source discovery and access. In fact, it must address all
the issues of dynamic heterogeneous distributed systems,
an active area of Computer Science research for several
decades. This has led to architecture such as Open Grid
Services Architecture [14], which achieve generality at the
price of complexity and, to some extent, performance.

VII. Conclusion

It is described the public-resource computing paradigm
and presented the design of a software system, BOINC,
that facilitates it. BOINCs general goal is to advance the
public resource computing paradigm: to encourage the cre-
ation of many projects, and to encourage a large fraction
of the worlds computer owners to participate in one or
more projects. BOINC reduces the barriers of entry to
public-resource computing; in fact it allows a research sci-
entist with moderate computer skills to create and operate
a large public-resource computing project with about a
week of initial work and an hour per week of maintenance.
The server for a BOINC based project can consist of a sin-
gle machine configured with common open-source software
(Linux, Apache, PHP, MySQL, Python). BOINC shares
resources among autonomous projects. Projects are not
centrally authorized or registered. Each project operates
its own servers and stands completely on its own. Nev-
ertheless, PC owners can seamlessly participate in multi-
ple projects, and can assign to each project a ”resource
share” determining how scarce resource (such as CPU and
disk space) are divided among projects. If most partici-
pants register with multiple projects, then overall resource
utilization is improved: while one project is closed for
repairs, other projects temporarily inherit its computing
power. On a particular computer, the CPU might work
for one project while the network is transferring files for
another. BOINC supports diverse applications, it pro-
vides flexible and scalable mechanism for distributing data,
and its scheduling algorithms intelligently match require-
ments with resources. Existing applications in common
languages (C, C++, FORTRAN) can run as BOINC ap-
plications with little or no modification. An application
can consist of several files (e.g. multiple programs and a
coordinating script). New versions of applications can be
deployed with no participant involvement. Finally public-
resource computing projects must provide ”incentives” in
order to attract and retain participants. The primary in-



6 JAVA MIDDLEWARE4GRID: MINI WORKSHOP 2007

centive for many participants is credit: a numeric measure
of how much computation they have contributed. BOINC
provides a credit accounting system that reflects usage of
multiple resource types (CPU, network, disk), is common
across multiple projects, and is highly resistant to ”cheat-
ing” (attempts to gain undeserved credit). BOINC also
makes it easy for projects to add visualization graphics to
their applications, which can provide screensaver graphics.

References

[1] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and
D. Werthimer, “Seti@home: An experiment in public-resource
computing,” Communications of the ACM, vol. 45, no. 11, pp.
56–61, November 2002.

[2] G. Fedak, C. Germain, V. Neri, and F. Cappello, “Xtremweb:
A generic global computing platform,” IEEE/ACM - CC-
GRID’2001 Special Session Global Computing on Personal De-
vices.

[3] A. Chien, B. Calder, S. Elbert, and K. Bhatia, “Entropia: archi-
tecture and performance of an enterprise desktop grid system,”
Journal of Parallel and Distributed Computing, vol. 63, no. 5,
pp. 597–610, May 2003.

[4] G. Fedak, C. Germain, V. Neri, and F. Cappello, “Climatepre-
diction.net: Design principles for public-resource modeling re-
search,” Proceedings of the 14th IASTED International Con-
ference on Parallel and Distributed Computing Systems.

[5] D. P. Anderson, C. Christensen, and B.Allen, “Designing a run-
time system for volunteer computing,” to appear in Supercom-
puting 06.

[6] D. P. Anderson, E. Korpela, and R. Walton, “High-performance
task distribution for volunteer computing,” 1st IEEE Inter-
national Conference on e-Science and Grid Computing, Mel-
bourne.

[7] A. Rowstron and P. Druschel, “Storage management and
caching in past, a large-scale persisten peer-to-peer storage fa-
cility.” Symposium on Operating System Principles.

[8] J. Kubiatowicz, D. Bindel, Y. Chen, P.Eaton, D. Geels,
R.Gummadi, S. Rhea, H. Weatherspoon, W. Weimer, C. Wells,
and B. Zhao, “Oceanstore: An architecture for global-scale per-
sistent storage.” Proceedings of CAM ASPLOS.

[9] C. Germain, “Result checking in global computing systems,”
ACM Int. Conf. on Supercomputing (ICS 03).

[10] P. Resnick, K. Kuwabara, R. Zeckhauser, and E. Friedman,
“Reputation systems,” Communications of the ACM, vol. 43,
no. 12, pp. 45–48, December 2000.

[11] P. http://predictor.scripps.edu.
[12] V. Pande and all, “Atomistic protein folding simulations on the

submillisecond time scale using worldwide distributed comput-
ing,” Biopolymers, vol. 68.

Fig. 1. Boinc Architecture

[13] I. Foster and C. Kesselman, “Globus: A metacomputing in-
frastructure toolkit,” Int’l Supercomputer Applications, vol. 11,
no. 2.

[14] I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke, “Grid
services for distributed systems integration,” IEEE Computer,
vol. 35, no. 6.

Linda Ponta was born in Tortona (AL) in
1979. She received the master degree in Elec-
tronic Engineering with honours from the Uni-
versity of Genoa, Genoa, Italy, in March 2004.
In the same year she has collaborated with the
CINEF group at the University of Genoa. In
January 2005 she has started the PhD in Elec-
tronic and Computer Science Engineering. Her
primary research interests are in the field of
agent-based simulation and data analysis.


