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CHAPTER 1

About This Document

This document provides information for porting the K Virtual Machine (KVM), 
version 1.1, to a new platform. KVM is a Java Virtual Machine implementation that 
is commonly used as the execution engine for J2ME CLDC (Java™ 2 Micro Edition, 
Connected Limited Device Configuration.)

1.1 Who should use this document
This document is intended primarily to those individuals and companies who want 
to port Sun’s reference implementation of the K Virtual Machine to a new platform. 
The document is useful also to those persons who want to learn more about the 
internal details of the KVM.

1.2 Related documentation
The Java™ Language Specification (Java Series), Second Edition by James Gosling, Bill 
Joy, Guy Steele and Gilad Bracha. Addison-Wesley, 2000, ISBN 0-201-31008-2

The Java™ Virtual Machine Specification (Java Series), Second Edition by Tim 
Lindholm and Frank Yellin. Addison-Wesley, 1999, ISBN 0-201-43294-3

Programming Wireless Devices with the Java™ 2 Platform, Micro Edition (Java Series) 
by Roger Riggs, Antero Taivalsaari, and Mark VandenBrink. Addison-Wesley, 2001, 
ISBN 0-201-74627-1 (Second edition planned for publication in Q2, 2003.)

Connected, Limited Device Configuration Specification, version 1.1, Java Community 
Process, Sun Microsystems, Inc.
http://jcp.org/jsr/detail/139.jsp

http://jcp.org/jsr/detail/139.jsp
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Connected, Limited Device Configuration Specification, version 1.0, Java Community 
Process, Sun Microsystems, Inc. 
http://jcp.org/aboutJava/communityprocess/final/jsr030/index.html

Mobile Information Device Profile Specification, version 2.0, Java Community Process, 
Sun Microsystems, Inc.
http://jcp.org/jsr/detail/118.jsp

Mobile Information Device Profile Specification, version 1.0, Java Community Process, 
Sun Microsystems, Inc. 
http://jcp.org/aboutJava/communityprocess/final/jsr037/index.html

Java 2 Platform Micro Edition (J2ME™) Technology for Creating Mobile Devices, A 
White Paper, Sun Microsystems, Inc. 
http://java.sun.com/products/cldc/wp/KVMwp.pdf

KVM Debug Wire Protocol (KDWP) Specification, Sun Microsystems, Inc.

K Native Interface (KNI) Specification, version 1.0, Sun Microsystems, Inc.

IEEE Standard for Binary Floating-Point Arithmetic (IEEE Std 754-1985), American 
National Standards Institute 

Making Java Work for High-End Computing, Java Grande Forum Report 

Improving Java for Numerical Computation, Numerics Working Group, Java Grande 
Forum

http://jcp.org/aboutJava/communityprocess/final/jsr030/index.html
http://jcp.org/jsr/detail/118.jsp
http://jcp.org/aboutJava/communityprocess/final/jsr037/index.html
http://java.sun.com/products/cldc/wp/KVMwp.pdf


3

CHAPTER 2

Introduction to KVM

2.1 K Virtual Machine (KVM)
KVM (also known as the K Virtual Machine or the KJava Virtual Machine) is a 
compact, portable Java™ virtual machine that has been designed specifically for 
small, resource-constrained devices such as cellular phones, pagers, personal 
organizers, mobile Internet devices, point-of-sale terminals, home appliances, and 
so forth.

The high-level design goal for the KVM team was to create the smallest possible 
“complete” Java virtual machine that would maintain all the central aspects of the 
Java programming language, and that would nevertheless run in a resource-
constrained device with only a few tens or hundreds of kilobytes of available 
memory (hence the name K, for kilobytes). More specifically, KVM is designed to 
be

■ small, with a static memory footprint of the virtual machine core starting 
from about 50-70 kilobytes (depending on the target platform and 
compilation options),

■ clean and highly portable,

■ modular and customizable,

■ as “complete” and “fast” as possible without sacrificing the other design 
goals.

KVM is implemented in the C programming language, so it can easily be ported 
onto various platforms for which an ANSI C compiler is available. The virtual 
machine has been built around a straightforward bytecode interpreter with various 
compile-time flags and options for helping porting efforts and space optimization.

KVM has been developed as part of a larger effort to provide a modular, scalable 
architecture for the development and deployment of portable, dynamically 
downloadable and secure applications in consumer and embedded devices. This 
larger effort is called the Java 2 Micro Edition (also known as Java 2 ME or J2ME).
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The K Virtual Machine is typically used as the implementation-level foundation for 
the following J2ME technology standards: Connected, Limited Device Configuration 
(CLDC) and Mobile Information Device Profile (MIDP). Further information on KVM, 
CLDC, MIDP and Java 2 Micro Edition in general is available in separate 
documents listed in Section 1.2 “Related documentation.”

KVM is derived from a research system called Spotless developed originally at Sun 
Microsystems Laboratories in early 1998. More information on the Spotless system 
is available in the Sun Labs technical report The Spotless system: implementing a Java 
system for the Palm connected organizer.

2.2 Differences between KVM 1.1 and KVM 
1.0.3/4
KVM 1.1 is the first KVM implementation that supports the CLDC Specification 
version 1.1. This release implements all the new features that have been added in 
CLDC 1.1, including:

■ Floating point support has been added.

■ All floating point byte codes are supported by CLDC 1.1.

■ Classes Float and Double have been added.

■ Various methods have been added to the other library classes to handle 
floating point values.

■ Weak reference support (small subset of the J2SE weak reference classes) has 
been added.

■ Classes Calendar, Date and TimeZone have been redesigned to be more J2SE-
compliant.

■ Error handling requirements have been clarified, and one new error class, 
NoClassDefFoundError, has been added.

■ In CLDC 1.1, Thread objects have names, like threads in J2SE do. The method 
Thread.getName() has been introduced, and the Thread class has a few new 
constructors that have been inherited from J2SE.

■ Various minor library changes and bug fixes, such as the addition of the 
following fields and methods:

■ Boolean.TRUE and Boolean.FALSE

■ Date.toString()

■ Random.nextInt(int n)

■ String.intern()

■ String.equalsIgnoreCase()

■ Thread.interrupt()
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■ Minimum total memory budget for CLDC has been raised from 160 to 192 
kilobytes, mainly because of the added floating point functionality.

■ Specification text tightened and obsolete subsections removed.

■ Much more detailed verifier specification (“CLDC Byte Code Typechecker 
Specification”) is provided as an appendix to the CLDC Specification version 
1.1.

For a more detailed summary of the differences between CLDC 1.0 and 1.1, refer to 
the CLDC Specification version 1.1.

The KVM 1.1 release includes all the functionality and fixes of the previous KVM 
1.0.4 release. In addition to the new features that are specific to CLDC Specification 
version 1.1, the main features of KVM 1.1 compared to KVM 1.0.3 include:

■ Support for the K Native Interface (KNI).

■ Rewritten class loader that can support error handling in a J2SE-compliant 
fashion.

■ More portable runtime verifier implementation that is easier to port to other 
virtual machines.

■ Various minor bug fixes and enhancements.

For most up-to-date information, refer to the release notes and KVM product 
website (http://java.sun.com/products/kvm).

Important. Unlike the earlier KVM/CLDC releases, the KVM 1.1 implementation 
no longer includes network protocol implementations, graphical user interface 
code, or other components that are outside the scope of CLDC Specification. The 
networking code as well as user interface components are provided in additional 
J2ME software releases such as the MIDP reference implementation.

http://java.sun.com/products/kvm
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CHAPTER 3

Compiler Requirements

In order to be able to compile the KVM codebase, you must have a C compiler 
capable of compiling ANSI-compliant C files. Your compiler must define the basic 
C types as shown below in Table 1.

If your J2ME configuration or profile supports floating point numbers, your 
compiler must support the floating point types shown below in Table 2.

TABLE 1 Basic types

Type Description

char An 8-bit quantity. It can be signed or unsigned.

signed char A signed 8-bit quantity.

unsigned 
char

An unsigned 8-bit quantity.

short A signed 16-bit quantity.

unsigned 
short

An unsigned 16-bit quantity.

int A signed quantity. It is either 16 or 32 bits.

unsigned int A unsigned quantity. It is either 16 or 32 bits.

long A signed 32-bit quantity.

unsigned 
long

An unsigned 32-bit quantity.

void * A 32-bit pointer.

TABLE 2 Floating point types

Type Description

float A 32-bit floating point value.

double A 64-bit floating point value.
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All KVM implementations support the Java type long.1 It is preferable that your 
compiler support 64-bit integers; however this is not a requirement. Porting the 
Java type long is discussed in Chapter 9, “64-bit Support.”

Your compiler must have some means of indicating additional directories to be 
searched for “includes” of the form:

#include <filename>

Our reference implementation has only been tested on machines with 32-bit 
pointers and that do not require “far” pointers of any sort. We do not know if it 
will run successfully on platforms with pointers of other sizes.

The codebase has been successfully compiled with the following compilers:

■ Sun C Compiler 5.0, 5.2 and 5.3 on Solaris,

■ GNU C 2.91.66 (egcs-1.1.2) compiler on Red Hat Linux,

■ GNU C 2.95.2 compiler on Solaris and Windows NT 4.0,

■ Microsoft Visual C++ 6.0 Professional on Windows NT 4.0 and Windows 2000.

The only non-ANSI C feature in the KVM source code base is its use of 64-bit 
integer arithmetic. Refer to Chapter 9 for further information on 64-bit support.

1. Note that in the Java programming language, the type long is always 64 bits. TABLE 1 on page 7 assumes 
that, as in most current C implementations, the type long represents a 32-bit quantity. This document uses 
the phrase “The Java type long” to refer to the 64-bit meaning.
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CHAPTER 4

Required Port-Specific Files and 
Functions

This section describes those files and functions that must be defined for each port.

4.1 File machine_md.h
Every KVM port must provide a file named VmPort/h/machine_md.h. The 
purpose of this file is to override the default compile time definitions and 
declarations provided in VmCommon/h/main.h, and supply any additional 
definitions and declarations that your specific platform might need. See Chapter 6, 
“Compilation Flags, Definitions and Macros” for a list of the definitions and 
declarations that your port will often need to override.

All port-specific declarations, function prototypes, typedef statements, #include 
statements, and #define statements must appear either in this machine_md.h, in 
a file included directly or indirectly by machine_md.h, in some file automatically 
included by your development environment,1 or via compiler switches.2

Port-specific functions can appear in any machine-specific file. Unless otherwise 
stated, any required port-specific function can also be defined as a macro, provided 
that its implementation is careful to ensure that each argument is evaluated exactly 
once.

1. Metrowerks CodeWarrior, for example, allows the user to create a prefix file.

2. Some compilers allow you to add the switch -Dname=value, which is equivalent to putting
#define name value
at the start of the file.
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4.2 File main.c
You will generally need to provide a new version of main.c that is suitable for 
your target platform. The default implementation provided in directory VmExtra/
src/main.c can be used as a starting point for platform-specific implementations. 
Refer to Chapter 7, “Virtual Machine Startup,” for further information.

4.3 Runtime functions that require porting 
efforts
Each port must define the functions given below (see VmCommon/h/runtime.h). 
They may be defined as either macros or as C code. Traditionally, the C code is 
placed in a file named VmPort/src/runtime_md.c

■ void AlertUser(const char* message)
Alert the user that something serious has happened. This function call usually 
precedes a fatal error.

■ cell *allocateHeap(long *sizeptr, void **realresultptr)
Create a heap whose size (in bytes) is approximately the long value *sizeptr. 
The heap must begin at an address that is a multiple of 4. The address of the 
heap is returned as the value of this function. The actual size of the heap (in 
bytes) is returned in *sizeptr. The value placed into *realresultptr is used 
as the argument to freeHeap when freeing the heap.

For most ports, *realresultptr will be set to the actual value returned by the 
native space allocation function. If this value is not a multiple of 4, it is rounded 
up to the next multiple of 4, and *sizeptr is decreased by 4.

■ void freeHeap(void *heapPtr)
Free the heap space that was allocated using allocateHeap. See above for the 
meaning of the heapPtr argument.

■ void GetAndStoreNextKVMEvent(bool_t forever, 
ulong64 waitUntil)

This function serves as an interface between the event handling capabilities of 
the virtual machine and the host operating system. (Defined in VmCommon/h/
events.h.) See Chapter 12 for details.

■ void InitializeVM()
Initialize the virtual machine in whatever way is necessary. On many of the 
current ports, this is a macro that does nothing.

■ void InitializeNativeCode()
Initialize the native code in whatever way is necessary. Ports can use this 
function (for example) to initialize the window system and to perform other 
native-code specific initialization.
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■ void InitializeClassLoading()
Initialize the class loader in whatever way is necessary. Ports can use this 
function (for example) to perform certain file/storage system initialization 
operations.

■ void InitalizeAsynchronousIO(void)
Initialize the system to handle asynchronous native methods. 

■ void FinalizeVM()
Perform any cleanup necessary before shutting down the virtual machine.

■ void FinalizeNativeCode()
Perform any clean up necessary to clean up after the native functions. Many 
ports use this function to shut down the window system.

■ long RandomNumber_md()
Return a random number.

■ void FinalizeClassLoading()
Perform any cleanup necessary before shutting the class loader. Ports can use 
this function (for example) to perform certain file/storage system finalization 
operations.

■ ulong64 CurrentTime_md(void)
Return the time, in milliseconds, since January 1, 1970 UTC. On devices that do 
not support the concept of time zone, it is acceptable to return the time, in 
milliseconds, since January 1, 1970 of the current time zone. 

■ unsigned long *Calendar_md(void)
Initializes the calendar fields, which represent the Calendar related attributes of 
a date. 

The functions InitializeNativeCode() and InitializeVM() are called, in 
that order, before any global variables have been set and before the memory-
management system has been initialized.

The function FinalizeVM() is called just before FinalizeNativeCode(). On 
those ports that have enabled profiling, the profiling information is printed out 
between the calls to these two functions. This allows the profiler to find out 
information about the window system, if necessary, and to use the window system 
for creating its output.

Note – If you want to use the KVM for running additional libraries such as those 
defined by the Mobile Information Device Profile (MIDP) or PDA Profile, additional 
porting work will be necessary to port the native functions required by those 
libraries.

Asynchronous native functions. If your port supports the use of asynchronous 
native methods, there are additional, port-specific functions that you must define :

yield_md()
CallAsyncNativeFunction_md()
enterSystemCriticalSection()
exitSystemCriticalSection()
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Note – The interfaces for functions enterSystemCriticalSection() and 
exitSystemCriticalSection() are defined in VmCommon/h/thread.h.

These functions are further described in §11.4.

4.4 Required C library functions
The KVM uses the following C library functions:

■ String manipulation: strcat, strchr, strcmp, strcpy, strncpy, strlen
■ Moving memory: memcpy, memove, memset, memcmp
■ Printing: atoi, sprintf, fprintf, putchar
■ Random number generation: rand
■ Exception handling: setjmp, longjmp (not absolutely necessary)

If your development environment does not supply definitions for these functions, 
you must either define them yourself, or use macros to map these names onto 
equivalent functions recognized by your development environment.1

The function memmove must be able to handle situations in which the source and 
destination overlap. The function memcpy is used only in those cases in which the 
source and destination are known not to overlap.

The functions fprintf and sprintf use the following formats:

%s, %d, %o, %x, %ld, %lo, %lx, %%

These formats never have options or flags.

There are no calls directly to printf.

Note – The components included in directory VmExtra and the machine-specific 
ports provided with this release may need additional native functions not listed 
above.

1. Be aware that the order of arguments may be different on different platforms. For example, the function 
memset takes arguments memset(location, value, count). The corresponding Palm OS function is 
MemSet(location, count, value). 
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CHAPTER 5

Directory Structure

5.1 Overview
Unzip the release package into any directory of your choice. This will create a 
directory j2me_cldc with the following subdirectories:

■ api
■ bin
■ build
■ doc
■ jam
■ kvm
■ tools

The contents of these directories are detailed in TABLE 3.

TABLE 3 Distribution directories

Subdirectory Description

api Contains the Java library source code that is provided with the 
release.

bin Contains all the binary executables and compiled Java library 
classes.

build Contains makefiles for building the KVM.

doc Contains documentation.

jam Contains the source code of the optional Java Application 
Manager (JAM) component that is provided with the KVM.

kvm Contains the source code of the KVM.

tools Contains the source code for a number of tools 
(JavaCodeCompact, preverifier, KDWP Debug Proxy) that are 
provided with the release.
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5.2 Directory kvm/VmCommon
All common, platform-independent source code of KVM is located in the directory 
kvm/VmCommon/src/. All common include files are in the directory kvm/
VmCommon/h/.

Port specific source and include files should go into the directories kvm/VmPort/
src/ and kvm/VmPort/h/, where Port is replaced by the name of your platform 
(e.g., kvm/VmWin, kvm/VmPilot, kvm/VmUnix.)

Some ports may choose to create a kvm/VmPort/build/ subdirectory which holds 
files that are part of the build process, but are not part of the source code per se.

TABLE 4 gives an overview of the KVM source code files contained in kvm/
VmCommon/src/ and kvm/VmCommon/h/.

TABLE 4 Files in VmCommon

File Description

StartJVM.c Virtual machine startup and command line argument reading.

bytecodes.c The definition of Java bytecodes for the redesigned bytecode 
interpreter (since KVM 1.0.2).

cache.h
cache.c

Inline caching operations for speeding up method lookup and 
for supporting “fast” bytecodes.

class.h
class.c

Internal runtime data structures and operations for representing 
Java classes.

events.h
events.c

Event system implementation.

execute.h
execute.c

Interpreter execution macros and operations needed by the 
redesigned bytecode interpreter (since KVM 1.0.2).

fields.h
fields.c

Internal runtime data structures and operations for representing 
fields and methods.

fp_math.h
fp_math.c

High-level floating point function interface.

frame.h
frame.c

Stack frame and exception handling operations.

garbage.h
garbage.c
collector.c
collectorDebug.c

Garbage collector and memory management.

global.h
global.c

Miscellaneous global variables and definitions.
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hashtable.h
hashtable.c

Hashtable implementation that is used internally by the virtual 
machine.

interpret.h
interpret.c

Bytecode interpreter. Note that starting from KVM 1.0.2 the 
actual interpreter code and bytecode definitions are located in 
other files (bytecodes.c, execute.h, execute.c).

kni.h
kni.c

K Native Interface (KNI) support.

loader.h
loader.c

Class loader and class format checks required by the class file 
verifier.

log.h
log.c

Logging/diagnostic operations for debugging and profiling.

long.h Special macros to handle 64-bit operations in a portable fashion.

main.h Compilation options and system-wide default settings.

messages.h Error and warning messages.

native.h
native.c
nativeCore.c

Native function table operations and core native library 
functions.

pool.h
pool.c

Runtime data structures and operations for representing 
constant pools.

profiling.h
profiling.c

Data declarations and operations for profiling virtual machine 
execution.

property.h
property.c

Operations for accessing Java system properties.

rom.h Macros needed by the ROMizer (JavaCodeCompact tool).

runtime.h Function templates for certain machine-specific operations that 
need to defined for each KVM port.

stackmap.c Stackmap operations that are used for supporting exact garbage 
collection.

thread.h
thread.c

Internal runtime data structures and operations for 
multithreading and Java thread management.

verifier.h
verifier.c
verifierUtil.h
verifierUtil.c

Classfile verifier (see Chapter 13 for details).

TABLE 4 Files in VmCommon

File Description
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5.3 Directory kvm/VmExtra
The directory kvm/VmExtra/ contains additional components that are potentially 
useful to a large number of ports. These files include an implementation of the 
most commonly needed networking protocols for Windows/Unix, a file interface 
for supporting class loading on those target platforms that have a regular file 
system, and a JAR file reader/inflater. This directory also contains the 
implementation of the Java-level debugger and the KDWP (KVM Debug Wire Protocol) 
interface.

In addition, the directory defines some optional macros for asynchronous event 
handling, and defines the virtual machine startup operations that are needed on 
non-embedded, command line based target platforms such as Windows and 
Solaris.

A description of the VmExtra files is provided in TABLE 5.

TABLE 5 Files in VmExtra

File Description

async.h
async.c

Macros for supporting asynchronous I/O (see 
Section 11.4 “Asynchronous native methods” and 
Section 12.1.4 “Asynchronous notification”).

loaderFile.c Low-level binding between the file system, class loader 
and JAR reader for those platforms that have a “real” file 
system.

main.c Default main program for those platforms that have a 
file system and support VM startup from a command 
line.

jar.h
inflate.h
inflateint.h
inflatetables.h
jar.c
inflate.c

Jar file reader and inflater (decompressor).

resource.c Implementation of a stream-based protocol for reading 
external resources.

debugger.h
debugger.c
debuggerCommands.h
debuggerStreams.h
debuggerInputStream.c
debuggerOutputStream.c
debuggerSocketIO.c

Implementation of the Java-level debugger and the 
KDWP (KVM Debug Wire Protocol) interface.
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5.4 Directory kvm/VmExtra/src/fp
The directory kvm/VmExtra/src/fp contains library functions that are needed for 
supporting various floating-point functions required by CLDC Specification version 
1.1. For more information on floating point support, refer to Chapter 10.
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CHAPTER 6

Compilation Flags, Definitions and 
Macros

This section lists various C preprocessor flags, definitions and macros that are 
defined in VmCommon/h/main.h. Understanding the meaning of these flags helps 
you in porting efforts, so please read the documentation below and in file 
VmCommon/h/main.h. 

Note – Rather than changing the values provided in VmCommon/h/main.h, these 
values should be preferably be overridden in your port-specific machine_md.h 
file. 

Also note that in our reference implementation, many of these flags are commonly 
overridden from makefiles.

For each definition, we give a brief summary and its default definition. These flags 
and macros are documented also in VmCommon/h/main.h.

6.1 General compilation options
The following definitions control the general platform-dependent compiler options 
that you must set before starting your porting efforts. Incorrect settings typically 
cause the virtual machine to malfunction.

#define COMPILER_SUPPORTS_LONG 1

Turn this flag on if your compiler has support for long (64 bit) integers.

#define NEED_LONG_ALIGNMENT 0

Instructs the KVM to know that your host operating system and compiler 
generally assume all 64-bit integers to be aligned on eight-byte boundaries.
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#define NEED_DOUBLE_ALIGNMENT 0

Instructs the KVM to know that your host operating system and compiler 
generally assume all double floating point numbers to be aligned on eight-byte 
boundaries (this flag is meaningful only if floating point support is turned on.)

Additional notes. The compiler generates better code if it knows the “endianness” 
of your machine. You should set one of the following two variables to “1” in your 
machine-specific header file. 

#define BIG_ENDIAN 0
#define LITTLE_ENDIAN 0

It is unnecessary to set one of these “endian” variables to “1” if you reset 
COMPILER_SUPPORTS_LONG to zero. (See Chapter 9 for more details.)

Also note that if your compiler supports 64-bit integer arithmetic and you have set 
the flag

#define COMPILER_SUPPORTS_LONG 

you should supply definitions for the types long64 and ulong64. If your compiler 
does not support 64-bit integers (or you have set the flag to 0 for some other 
reason), structure definitions of these two types are created for you automatically. 
(See Chapter 9.)

6.2 General system configuration options
The following definitions allow you to control which components and features to 
include in your port.

#define IMPLEMENTS_FLOAT 1

Turns floating point support in KVM on or off. Should be ‘1’ in those 
implementations that are compliant with CLDC Specification version 1.1, and ‘0’ 
in those implementations that are compliant with CLDC Specification version 1.0.

#define PATH_SEPARATOR ‘:’

Path separator character used in CLASSPATH. This definition is meaningful 
only when utilizing the default class loader for command line based systems. 
(Defined in VmCommon/h/loader.h.)

#define ROMIZING 1

Turns class prelinking/preloading (JavaCodeCompact) support on or off. If this 
option is turned on, KVM prelinks all the system classes directly in the virtual 
machine, speeding up application startup considerably. Refer to Chapter 14 for 
details.
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#define USE_JAM 0

Includes or excludes the optional Java Application Manager (JAM) component 
in the virtual machine. Refer to Chapter 15 for details.

#define ASYNCHRONOUS_NATIVE_FUNCTIONS 0

Instructs the KVM to use optional asynchronous native functions. Refer to 
Section 11.4 “Asynchronous native methods” and Chapter 12 for details.

#define USE_KNI 1

This option was introduced in KVM 1.0.4. When enabled, the system will 
include some code that is needed by the K Native Interface (KNI). If you do not 
intend to use KNI (you should!), we recommend you to turn this option off, 
because old-style native functions will run slightly faster with this option turned 
off. Refer to the KNI Specification for further information on KNI.

6.3 Palm-specific system configuration 
options
The following definitions allow you to control certain Palm-specific system 
configuration options. All these features were originally designed for the Palm OS 
version of KVM, but they may be useful also for other ports.

Note – The CLDC implementation for the Palm OS is no longer available. 

#define USESTATIC 0

Instructs the KVM to use a Palm-specific optimization in which certain 
immutable runtime data structures are moved from “dynamic RAM” to “storage 
RAM” to conserve Java heap space. A fake implementation of this mechanism is 
available also for the Windows and Solaris versions of KVM (for debugging 
purposes.)

#define CHUNKY_HEAP 0

Instructs the KVM to use an optimization which allows the KVM to allocate the 
Java heap in multiple chunks or segments. This makes it possible for the virtual 
machine to allocate more heap space on certain platforms such as Palm OS.

#define RELOCATABLE_ROM 0

Instructs the KVM to use an optimization in which the prelinked system classes 
are stored using a relocatable (movable) representation. This allows romized 
(JavaCodeCompacted) system classes to be stored in devices such as Palm OS.
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6.4 Memory allocation settings
The following definitions affect the amount of memory KVM allocates.

#define DEFAULTHEAPSIZE 256*1024

The Java heap size that KVM allocates upon virtual machine startup. This value 
is commonly overridden from makefiles. Note that, starting from KVM 1.0.3, it is 
possible to override the heap size value from the command line (in those ports 
that support command line operation.) The heap size value must be a number 
that is divisible by four. The number must be in the range of 16k to 64 M.

#define INLINECACHESIZE 128

The size of a special inline cache area that KVM reserves upon virtual machine 
startup if the ENABLEFASTBYTECODES option is turned on. The inline caching 
mechanism speeds up method lookups in the KVM by utilizing a technique 
popularized by Deutsch & Schiffman in the early 1980s. The size here is 
expressed as a number of inline cache entries (each entry requires 12-16 bytes 
depending on your target platform.)

#define STACKCHUNKSIZE 128

The execution stacks of Java threads inside the KVM grow and shrink 
automatically as necessary. This value defines the default size of a new stack 
frame chunk when a new stack chunk needs to be allocated. Reducing the 
default stack chunk size will make the creation of new Java threads less 
expensive, but will slow down the execution of the VM when running programs 
that require a lot of stack space (that is, programs that have a lot of nested 
method calls.)

#define STRINGBUFFERSIZE 512

The size (in bytes) of a statically allocated area that the virtual machine uses 
internally in various string operations.

Note – As a general principle, KVM allocates all the memory it needs upon virtual 
machine startup. At runtime, all the memory is allocated inside the preallocated 
areas. Of course, the situation may change if the virtual machine calls host-system 
specific native functions (such as graphics functions) that perform dynamic 
memory allocation outside the Java heap.
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6.5 Garbage collection options
The following option turns on compacting garbage collection. Note that currently 
compaction cannot be used on those platforms that have a segmented (non-
contiguous) memory architecture.

#define ENABLE_HEAP_COMPACTION 1

The following option, if set to a non-zero value, causes a garbage collection to 
occur on every allocation. This makes it easier to find garbage collection problems. 
Since this option makes the virtual machine run extremely slowly, the option 
should be turned off in production builds.

#define EXCESSIVE_GARBAGE_COLLECTION 0

6.6 Class loading options
Some KVM ports may want to forbid any new classes from being loaded into any 
system package. The following macro defines whether a package name is one of 
these restricted packages. By default, the system prevents dynamic class loading to 
java.* and javax.* packages.

#define IS_RESTRICTED_PACKAGE_NAME(name) \
((strncmp(name, "java/", 5) == 0) || \
(strncmp(name, "javax/", 6) == 0)) 

6.7 Interpreter execution options (since 
KVM 1.0)
The following macros allow you to turn on and off certain features controlling 
interpreter execution. The default values for a production release are shown below.

#define ENABLEFASTBYTECODES 1

Turns runtime bytecode replacement and method inline caching on or off. This 
option improves the performance of the virtual machine by about 10-20%, but 
increases the size of the virtual machine by a few kilobytes. Note that bytecode 
replacement cannot be performed on those target platforms in which bytecodes 
are stored in non-volatile memory such as ROM.
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#define VERIFYCONSTANTPOOLINTEGRITY 1

Instructs the virtual machine to verify the types of constant pool entries at 
runtime when performing constant pool lookups. Reduces runtime performance 
slightly, but is generally recommended to be kept on for safety and security 
reasons.

Additional definitions and interpreter macros:

#define BASETIMESLICE

The value of this variable determines the basic frequency (as a number of 
bytecodes executed) in which the virtual machine performs thread switching, 
event notification and other periodically needed operations. A smaller number 
reduces event handling and thread switching latency, but causes the interpreter 
to run more slowly.

#define DOUBLE_REMAINDER(x, y) fmod(x,y)

A compiler macro, defined in interpret.h, that is used to find the modulus of 
two floating point numbers.

#define SLEEP_UNTIL(wakeupTime)

This macro makes the virtual machine sleep until the current time (as indicated 
by the return value of the function CurrentTime_md()) is greater than or equal 
to the wakeup time. The default implementation of SLEEP_UNTIL is a busy 
loop. Most ports should usually provide a more efficient implementation for 
battery conservation reasons. Refer to Section 12.4 “Battery power conservation” 
for further details.

6.8 Interpreter execution techniques (after 
KVM 1.0.2)
Since the release 1.0.2, KVM has an interpreter design that gives up to 15-30% 
better performance than KVM 1.0 without any loss of ANSI C portability. The 
actual performance improvement percentage depends on the target platform and 
the capabilities of the C compiler that is used for compiling the KVM. The 
performance improvement is the result of the following four techniques that can be 
used independently of each other:

■ Restructuring the interpreter code so that virtual machine registers will be 
placed into local C variables when the interpreter is running.

■ Splitting uncommonly used Java bytecodes into a separate interpreter loop 
subroutine. This allows the C compiler to do a better job in optimizing the code 
for more frequently used bytecodes.

■ Moving the test for Java thread rescheduling from the top of the interpreter loop 
to branch bytecodes. This reduces the overhead of the timeslice counter that is 
used for controlling thread switching.



Chapter 6 Compilation Flags, Definitions and Macros 25

■ Padding out the bytecode space in order to allow the C compiler to produce 
better code for the main switch statement of the interpreter.

These techniques do not depend on any compiler-specific features, and are 
therefore portable across a wide variety of C compilers. Each of the techniques and 
the corresponding macros are discussed in more detail below.

6.8.1 Copying the virtual machine registers to local 
variables
The virtual machine registers of the KVM (ip, sp, lp, fp, cp) are accessed very 
frequently when bytecodes are being executed. In KVM 1.0, all these virtual 
machine registers are defined as global C variables. Starting from KVM 1.0.2, these 
registers are still principally defined as global variables, but if the 
LOCALVMREGISTERS option is on, they are copied to local variables when the 
interpreter is executing. A good C compiler will then optimize the interpreter loop 
so that these local variables are put into machine registers for substantially faster 
execution. 

#define LOCALVMREGISTERS 1

Turns the localization of virtual machine registers on or off.

#define IPISLOCAL 1
#define SPISLOCAL 1
#define LPISLOCAL 0
#define FPISLOCAL 0
#define CPISLOCAL 0

These macros allow you to control specifically which of the virtual machine 
registers should be used locally by the interpreter loop. These macros have been 
added to provide better control over register allocation, as many resource-
constrained platforms may not have many physical hardware registers available. 

The optimal selection of these options for a specific platform will require careful 
examination of the machine code produced by the compiler, along with a good 
deal of experimentation. By default, ip (instruction pointer), and sp (stack 
pointer) are allocated locally, while lp (locals pointer), fp (frame pointer) and cp 
(constant pool pointer) are kept in global variables. 
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Note – If you use the LOCALVMREGISTERS option and you want to make further 
changes to the code implementing Java bytecodes, the single most important thing 
to remember is to make sure that the local copies of the virtual machine registers 
are copied back to their global variables before calling functions in the virtual 
machine that expects them to be in their global variables. Failure to do so will lead 
to obscure bugs. The virtual machine registers can be saved to their global variables 
by using the macro VMSAVE. They are restored back to their local variables by using 
the macro VMRESTORE. For instance the RETURN bytecodes may need to call 
monitorExit(), and to do this the call must be done as follows:

VMSAVE
result = monitorExit(...);
VMRESTORE

6.8.2 Splitting uncommon bytecodes into a separate 
subroutine
The KVM 1.0 interpreter had the code for all the Java bytecodes in a single large 
switch statement. However, a majority of Java bytecodes are executed very rarely. If 
the code for the more frequently and less frequently used bytecodes is placed in 
separate routines, the C compiler can often do a better job optimizing the resulting 
smaller interpreter loops. This also helps the compiler find hardware registers for 
the virtual machine registers more easily when the LOCALVMREGISTERS option is 
in use.

#define SPLITINFREQUENTBYTECODES 1

Turning this option on allows the C compiler to generate separate interpreter 
loops for the frequently and infrequently used bytecodes.

Note that the code to process the bytecodes is now contained in a file called 
bytecodes.c. The code for all the bytecodes is kept here and is selectively 
compiled by utilizing a number of internal macro definitions 
(STANDARDBYTECODES, INFREQUENTSTANDARDBYTECODES, FLOATBYTECODES 
and FASTBYTECODES).

The code in bytecodes.c is executed from another new file called execute.c. If 
the SPLITINFREQUENTBYTECODES option is enabled, the file bytecodes.c is 
included twice into execute.c: once for the routine called SlowInterpret() 
and once for the routine Interpret(). The four macros mentioned above are used 
to control the expansion of the appropriate bytecodes into the correct subroutines.
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6.8.3 Moving the test for thread rescheduling to 
branchpoints
The old KVM 1.0 interpreter tested for the need to reschedule (switch threads) 
before the execution of each bytecode. The performance of the interpreter was 
improved by about 5% by changing the location of this test so that the test is 
performed only after every branch, goto, call and return instruction.

Thread scheduling in the old interpreter took place when a certain number of 
bytecodes had been executed. This number was, by default, 100 times the priority 
of the thread. In the new interpreter, thread rescheduling occurs by default when 
1000 times the number of branch, call, or return bytecodes have been executed.

#define RESCHEDULEATBRANCH 1

Turning this option on changes the thread switching mechanism so that tests for 
thread switching are moved to branchpoints. Note that enabling this option 
affects the value of the BASETIMESLICE macro inherited from KVM 1.0. When 
this option is off, thread scheduling operates as in KVM 1.0.

6.8.4 Padding out the bytecode space
The Java Virtual Machine Specification defines 200 standard bytecodes, plus 
additionally reserves four other bytecodes for other use. However, many C 
compilers produce better code when the size of the bytecode (switch) table is 
exactly 256. 

#define PADTABLE 0

Turning this option on will pad the interpreter switch tables so that the number 
of instructions is 256. This will increase the size of the virtual machine, but 
allows the interpreter to run faster on some platforms.

6.9 Java-level debugging options
The KVM 1.0.2 release introduced a new Java-level debugger interface that allows 
the KVM to be plugged into third party Java debugger environments and 
integrated development environments (IDEs) that supports the JDWP (Java Debug 
Wire Protocol) protocol. The macros in this subsection are related to the Java-level 
debugger options.



28 KVM Porting Guide • March, 2003

Note – It is important to notice that there is a fundamental difference between the 
debugging facilities intended for Java-level debugging and VM-level debugging. 

Java-level debugging facilities are related to the debugging of the Java programs that 
the KVM executes. VM-level debugging facilities are used for debugging the KVM 
itself at the native (C) code level.

#define ENABLE_JAVA_DEBUGGER 0

Includes a large amount of debugger support code that is needed for plugging 
KVM into a third-party Java debugger or integrated development environment 
such as Forte or Borland JBuilder.

More information about the Java-level debugger facilities and the KDWP interface 
is provided in Chapter 16, “Java-Level Debugging Support (KDWP).”

6.10 VM-level debugging and tracing 
options
KVM provides a large number of debugging and tracing facilities that can be used 
for inspecting the behavior of the KVM itself at the native (C) code level. These 
facilities can be extremely helpful during porting efforts.

All the VM-level debugging and tracing options should be turned off in a 
production release.

6.10.1 Including and excluding debugging code
#define INCLUDEDEBUGCODE 0

Includes a large amount of debugging and logging code that is useful when 
porting the virtual machine onto a new platform. This option should be turned 
off in production builds.

#define ENABLEPROFILING 0

Turns on or off certain profiling features that allow you to monitor virtual 
machine execution and get execution statistics. Turning this option on slows 
down the virtual machine execution speed considerably. This option should be 
turned off in production builds.
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6.10.2 Tracing options
In KVM 1.0, all the tracing options were compilation flags that could be changed 
only by recompiling the virtual machine. In KVM 1.0.2, all these tracing options 
were changed into global variables that can be controlled from the command line. 
This makes it much easier to turn individual tracing options on and off. These 
global variables (and command line switches) are available only if the virtual 
machine has been compiled with the INCLUDEDEBUGCODE mode turned on.

If your target platform does not support command line operation, you can control 
these options directly by changing their default values in file VmCommon/src/
global.c, or by defining a graphical user interface that sets and resets these 
options.

Additionally, you can control whether the tracing messages printed out are terse or 
more verbose by modifying the following option:

TABLE 6 Command line tracing options

Option Description

-traceallocation trace memory allocation

-tracedebugger trace the debugging interface (since KVM 1.0.3)

-tracegc trace garbage collection

-tracegcverbose trace garbage collection, more verbose

-traceclassloading trace class loading

-traceclassloadingverbose trace class loading, more verbose

-traceverifier trace class file verifier

-tracestackmaps trace the behavior of stack maps

-tracebytecodes trace bytecode execution

-tracemethods trace method calls

-tracemethodsverbose trace method calls, more verbose

-traceframes trace stack frames

-tracestackchunks trace the allocation of new stack chunks

-traceexceptions trace exception handling

-traceevents trace the behavior of the event system

-tracethreading trace the behavior of the multithreading system

-tracemonitors trace the behavior of monitor objects

-tracenetworking trace the network access

-traceall activates all the tracing options above simultaneously
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#define TERSE_MESSAGES 0

KVM also contains a stack trace printing facility that can be turned on to help 
debugging of exceptions and errors in more detail (at the cost of some additional 
memory footprint). By default, this mode is turned on automatically when the 
INCLUDEDEBUGCODE flag is turned on.

#define PRINT_BACKTRACE 0

6.11 Error handling macros

Note – The internal error handling macros used by the KVM have been redesigned 
in KVM 1.1 to support the redesigned class loader.

The interpreter uses the internal error handling macros shown in 
CODE EXAMPLE 1.

If there is a call to the macro THROW(error), anywhere inside the “normal code,” 
the VM jumps immediately to error handling code. Uses of this macro can be 
nested, either lexically or dynamically. The THROW jumps to the innermost CATCH 
error handling code. (The various TRY, THROW, and CATCH macros are defined in 
VmCommon/h/global.h.)

CODE EXAMPLE 1 Error handling macros

TRY {
normal code

} CATCH (error) {
error handling code

} END_CATCH
always continue here

By default, this behavior is emulated using setjmp and longjmp. However, 
platforms (such as PalmOS) that already provide a similar mechanism should use 
the native mechanism.

KVM 1.1 also has new macros for controlling the shutdown of the virtual machine. 
These macros have been illustrated in CODE EXAMPLE 2

CODE EXAMPLE 2 VM shutdown macros

VM_START {
normal VM code

} VM_FINISH (value) {
code to execute before VM shuts down

} VM_END_FINISH
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Rather than calling the normal C exit function, the proper way to exit from the 
VM is to call macro VM_EXIT(value). Calling this macro will cause the control of 
the VM to be immediately transferred to the code that follows the 
VM_FINISH(value) macro. The value to be passed to this code typically 
represents the exit code that the VM will return when it shuts down.

6.12 Miscellaneous macros and options
#define UNUSEDPARAMETER(var)

Some functions in the reference implementation take arguments that they do not 
use. Some compilers issue warnings; others do not. For those compilers that do 
issue warnings, they differ in how you indicate that the non-use of the variable 
is intentional and that you do not wish to get a warning. This macro should do 
whatever is necessary to get your compiler to remain quiet.

6.13 Overriding the compilation flags and 
other options from makefiles
The following parameters are commonly used when using gnumake to build the 
KVM.

gnumake ROMIZING=false

Build the KVM with romizing disabled. That is, do not link all the system classes 
statically into the KVM executable. (The default is to build the KVM with 
romizing enabled.)

gnumake DEBUG=true

Build the KVM with the Java-level debugger and VM-internal debugging code 
enabled.

gnumake USE_JAM=true

Build the KVM with the Java Application Manager (JAM) enabled.

gnumake GCC=true

Use GNU C compiler instead of the standard Sun compiler (on Solaris.)

GCC=true is the default option when developing on Linux, and this is the 
setting for compiling on Windows using CygWin tools.
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gnumake USE_KNI=false

Build the KVM without the K Native Interface (KNI) functionality. (The default 
is to build the KVM with KNI enabled.)
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CHAPTER 7

Virtual Machine Startup

Virtual machine startup practices can vary significantly in different KVM ports. By 
default, KVM supports regular command line based Java virtual machine startup, 
but the virtual machine can easily be modified for those environments in which 
command line based startup is not desired.

7.1 Command line startup
This subsection describes the virtual machine startup conventions when launching 
KVM from a command line.

The file VmExtra/src/main.c provides a default implementation of main(). The 
virtual machine is called from the command line as follows:

kvm [option]* className [arg]*

where each option is one of

-version
-classpath <list of directories>
-heapsize <heap size parameter>

The required className argument specifies the class whose method 
static main(String argv[]) is to be called. All arguments beyond the class 
name are uninterpreted strings that are made into a single String[] object and 
passed as the single argument to the main method.

The -classpath option allows the user to define the directories from which the 
KVM reads the class files. The parameter <list of directories> is a single 
string in which the directories are separated by the PATH_SEPARATOR character. 
The value of the PATH_SEPARATOR character is typically ‘;’ on Windows platforms, 
and ‘:’ on Unix platforms.

The -heapsize option (introduced in KVM 1.0.3) allows the user to manually set 
the Java heap size that KVM allocates upon virtual machine startup. The heap size 
can range from 16 kilobytes to 64 megabytes. The heap size can be specified either 
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in bytes (such as 32768), kilobytes (such as 32k or 32K), or megabytes (such as 1m 
or 1M). Note that when the heap size is defined in bytes, the KVM automatically 
rounds up the heap size number to the next number that is divisible by four.

Additionally, if the virtual machine has been compiled with the 
INCLUDEDEBUGCODE mode turned on, the tracing options given in TABLE 6 on 
page 29 are available.

When the Java-level debugging interface is in use, additional command line 
options are available to control the debugger. Refer to Chapter 16 for details.

The default implementation of main(int argc, char **argv) calls the function 
StartJVM() with an argv in which all of the options have been removed and an 
argc that has been decremented appropriately.

7.2 Alternative VM startup strategies
If your implementation does not start the virtual machine from a command line 
(for example, if you use a graphical environment for application launching), you 
must arrange your code to call StartJVM() with the appropriate arguments.

7.3 Using a JAM (Java Application 
Manager)
Many KVM ports run on resource-constrained devices which lack many features 
commonly available in desktop operating systems, such as a command line 
language, graphical file manager, or even a file system. To facilitate the porting of 
KVM to such platforms, KVM provides a sample implementation of a facility called 
JAM (Java Application Manager).

At the compilation level, JAM can be turned on or off by using the flag

#define USE_JAM 1

When building the KVM using gnumake, the following command automatically 
builds the system with the JAM enabled:

gnumake USE_JAM=true

If JAM is compiled into the KVM, it must be activated with the -jam command line 
flag.
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The JAM implementation assumes that applications are available for downloading 
as JAR files by using the HTTP protocol. The JAM reads the contents of the JAR file 
and an associated descriptor file via HTTP, and launches KVM with the main class 
as a parameter.

Since the JAM serves as an interface between the host operating system and the 
virtual machine, it can be used, e.g., as a starting point for a device-specific 
graphical Java application management and launching environment 
(“microbrowser”), or as a test harness for virtual machine testing. The JAM 
reference implementation provides a special “-repeat” mode that allows the JAM 
to run a large number of Java applications (e.g., test cases) without having to restart 
the virtual machine every time.

Refer to Chapter 15, “Java Application Manager (JAM),” for further information on 
the JAM.
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CHAPTER 8

Class Loading, JAR Files, and 
Inflation

The KVM source code includes an implementation for reading Java class files from 
regular files/directories, as well as from (compressed) JAR files. Generally 
speaking, the KVM class loader can be divided into two parts:

1. generic part,

2. port-dependent part.

The generic part, defined in file VmCommon/src/loader.c is designed to be 
independent of the file/storage system of the target device. This part of the class 
loader does not require any porting efforts. The JAR file reader, defined in files 
VmExtra/src/jar.c, VmExtra/src/inflate.c, VmExtra/h/jar.h, 
VmExtra/h/inflate.h, VmExtra/h/inflateint.h, and VmExtra/h/
inflatetables.h, is also written in a way that it does not necessitate any porting 
efforts.

Note – The generic part of the class loader implementation has been redesigned in 
KVM 1.1 to support error handling in a more generalized, J2SE-compliant fashion.

If you need to provide an alternative method for loading class files, you must 
define your own port-specific class loading mechanism. The default 
implementation in VmExtra/src/loaderFile.c is intended for those target 
systems that have a  conventional file system. This implementation can be used as 
a starting point for alternative, platform-specific implementations.

The KVM code to read JAR files can also be used independently of reading class 
files. Applications that need to make their own use of JAR files can use these 
functions. In addition, the function that decompresses compressed JAR entries (a 
process called “inflation”), can also be used to decompress other information. For 
example, the PNG image format uses the same compression and decompression 
algorithms.
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8.1 Porting the class file loading interface
The structures and functions required by the port-specific class file loading 
interface have been defined in file VmCommon/h/loader.h. If you do not intend to 
use the default class file loading interface provided in file VmExtra/src/
loaderFile.c, you must supply your own definitions for the structures and 
functions listed below.

You must define the C structure filePointerStruct. The generic code uses the 
definitions

struct filePointerStruct;
typedef struct filePointerStruct *FILEPOINTER;

without knowing anything about the fields of this structure.

You must also define the following functions:

■ void InitializeClassLoading()
The code typically initializes the variable ClassPathTable and any other 
variables needed for file loading upon virtual machine startup. Keep in mind 
that the value in ClassPathTable is usually a root for garbage collection, and 
must either be NULL or be an object allocated from the heap.

■ The C preprocessor constant PATH_SEPARATOR indicates the character that 
separates directories in the class path. Its default value is ':'. If you are using 
Windows or a similar implementation, you will need to change this value to 
';'. (Defined in VmCommon/h/loader.h.)

■ void FinalizeClassLoading()
This function is the opposite of initializeClassLoading(). This function 
performs the class loader finalization operations that are necessary when the 
virtual machine shuts down. Actual implementation will vary substantially 
depending on the target architecture.

■ FILEPOINTER openClassfile(INSTANCE_CLASS clazz)
Open the class file pointed to by the clazz pointer. 

■ void closeClassfile(FILEPOINTER_HANDLE ClassFileH)
Close the indicated class file. Close any system resources (such as file handles or 
database records) associated with the class file.

■ void loadByteNoEOFCheck(FILEPOINTER_HANDLE ClassFileH)
Load the next byte if it is a JAR file, or load the next character and return it, or 
EOF (-1) if end of file was reached.

■ unsigned char loadByte(FILEPOINTER_HANDLE ClassFileH)
unsigned short loadShort(FILEPOINTER_HANDLE ClassFileH)
unsigned long loadCell(FILEPOINTER_HANDLE ClassFileH)
Read the next one, two, or four bytes from the class file, and return the result as 
an unsigned 8-bit, unsigned 16-bit, or unsigned 32-bit value. 16- and 32-bit 
quantities in Java class files are always in big-endian format.
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■ void loadBytes(FILEPOINTER_HANDLE ClassFileH, char *buffer,
 int len)
Load the next len bytes from the class file into the indicated buffer.

■ int loadBytesNoEOFCheck(FILEPOINTER_HANDLE ClassFileH, 
 char *buffer, int pos, int length)
Load the next length bytes from the class file into the indicated buffer, but 
without checking for EOF.

■ void skipBytes(FILEPOINTER_HANDLE ClassFileH, 
 unsigned long length) 
Skip the next length bytes in the class file.

■ int getBytesAvailable(FILEPOINTER_HANDLE ClassFileH)
Get the number of remaining bytes in the class file.

The class file structure returned by openClassFile must be an object allocated 
from the Java heap.

8.2 JAR file reader
CLDC-compliant KVM implementations are required to be able to read class files 
from compressed JAR files. The location of the JAR file(s) is specified in an 
implementation-dependent manner.

Functions are provided in jar.c for reading entries in a JAR file. If the 
preprocessor symbol JAR_FILE_USE_STDIO is non-zero, then these functions use 
C standard I/O routines to read the JAR file. If this preprocessor symbol is set to 0, 
this indicates that JAR files are in memory.

The JAR file reader uses the inflater, which is discussed in the next section.

8.2.1 Opening a JAR file
Before using a JAR file, you must “open” it using the function 

bool_t openJARFile(void *nameOrAddress, int length,
JAR_INFO entry)

The arguments are as follows:

If JAR_FILE_USE_STDIO is non-zero, then the first argument is the name of the 
JAR file and the second argument is ignored.

If JAR_FILE_USE_STDIO is zero, then the first argument is a pointer in memory to 
the beginning of the JAR file, and the second argument is the length, in bytes, of 
the JAR file.
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The third argument is a pointer to a structure of type struct jarInfoStruct 
defined in jar.h. This structure is filled with information about the opened JAR 
file. This function returns TRUE if it successfully managed to open the JAR file and 
parse its directory; it returns FALSE otherwise.

8.2.2 Closing a JAR file
If a JAR file has been successfully opened using openJARFile, you must close the 
file when you are done. You must use the function:

void closeJARFile(JAR_INFO entry)

The argument is a pointer to the same structure that was filled in by 
openJARFile.

8.2.3 Reading a JAR file entry
To read a specific entry in a JAR file, you use the function

static void *
loadJARFileEntryInternal(JAR_INFO entry,

const unsigned char *centralInfo,
long *lengthP, int extraBytes);

The entry argument is a pointer to the structure filled in by openJARFile. The 
centralInfo argument is the null-terminated name of the entry.1 The 
extraBytes entry indicates that the JAR reader should pad the result with that 
many extra bytes at the beginning.

If the JAR file reader is successful, it will set the *lengthP argument to the length 
of JAR file entry. This length does not include padding inserted because of the 
extraBytes argument. The actual entry (plus padding) is returned as the result of 
this function.

If the JAR file reader could not find the entry, or if for some reason it was unable to 
read the entry, this function returns NULL.

The result of this function is a heap-allocated object. If this function is called from 
within the KVM, then you must protect it, if necessary, from garbage collection.

1. Note that Jar files always use ‘/’ as the directory separator character.
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8.2.4 Reading multiple JAR file directory
To read the directory of a JAR file and possibly some of its entries, use the function

void loadJARFileEntries(JAR_INFO jarFile,
JARFileTestFunction testFunction,
JARFileRunFunction runFunction,
void* info);

The jarFile argument is a pointer to the structure filled in by openJARFile. The 
testFunction and runFunction arguments are callback functions whose use is 
described below. The info argument is not used by the jar directory reader, but is 
passed on an argument to the testFunction and runFunction callbacks.

The testFunction argument is a callback function that is called on each (non-
directory) entry in the JAR file. It is called as follows:

typedef bool_t 
(*JARFileTestFunction)(const char *name,
int nameLength,
int *extraBytes,
void *info);

The name and nameLength argument specify the name of entry in the JAR file 
directory. The name argument is not null terminated. The value *extraBytes is 
initially zero, but you can change it to a different value to indicate that the result 
needs to be padded with extra bytes at the beginning. The info argument is the 
same as whatever was passed to loadJARFileEntries.

If this function returns TRUE, it indicates that you want to read this entry. If this 
function returns FALSE, you do not want to read this entry.

For every entry in which testFunction returns TRUE, the jar file reader reads the 
data and calls the runFunction as follows:

typedef void 
(*JARFileRunFunction)(const char *name, int nameLength,

void *value, long length, void *info);

The name and nameLength arguments are the same as above. The value 
argument gives the result of reading the JAR file entry. The length argument is 
the length of the JAR file entry, not including any padding bytes. The info 
argument is the same as whatever was passed to loadJARFileEntries.

If reading the entry is unsuccessful, then the runFunction is called with the 
value argument set to NULL.

The value argument is allocated on the heap so it must be protected, if necessary, 
from garbage collection.
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8.3 Inflation
The inflate function can be used to decompress streams that have been compressed 
using the so-called deflation algorithm. This is the compression algorithm 
commonly used in JAR files and in the PNG image format.

The function that inflates JAR file entries can also be used for other purposes. The 
function is called with the following arguments.

typedef  int  (*JarGetByteFunctionType)(void *);

bool_t inflateData(void *compData, JarGetByteFunctionType
getByte,
int compLen,
UNSIGNED_CHAR_HANDLE decompData,
int decompLen);

This function decompresses a stream of compLen bytes into a buffer of decompLen 
bytes. Successive bytes of input are obtained by repeatedly calling

getByte(inFile)

This function will be called up to compLen + INFLATER_EXTRA_BYTES times, 
where INFLATER_EXTRA_BYTES is defined in inflate.h to be the constant 4. 
Any values returned beyond the first compLen calls to the function are immaterial.

The argument decompData must be a pointer to a buffer handle of at least 
decompLen characters. When using this function, the buffer must either not be in 
the heap, or decompData must be registered with the garbage collector so that 
decompData is updated if the buffer is moved.

This function returns TRUE if the decompression is successful, and FALSE 
otherwise.
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CHAPTER 9

64-bit Support

We do not require your compiler to support 64-bit arithmetic. However, having a 
64-bit capable compiler makes porting much easier.

9.1 Setup
If your compiler supports 64-bit integers, you should define the types long64 
and ulong64 in one of your platform-dependent include files. The meaning of 
these two types is shown below in Table 7.

You should consider setting one of the two compiler constants BIG_ENDIAN or 
LITTLE_ENDIAN to a non-zero value. This is only required if you are using the 
Java Code Compactor, but KVM can produce better code if it knows the endianness 
of your machine.

For example, using the Gnu C compiler or the Solaris C compiler, you would write:

typedef long long long64;
typedef unsigned long long ulong64;

Using Microsoft Visual C/C++, you would write:

typedef __int64 long64;
typedef unsigned __int64 ulong64;

If Your compiler does not support 64-bit integers,1 you must set the preprocessor 
constant COMPILER_SUPPORTS_LONG to zero. You must define exactly one of 
BIG_ENDIAN or LITTLE_ENDIAN2 to have a non-zero value.

TABLE 7 64-bit types

Type Description

long64 A signed 64-bit integer.

ulong64 An unsigned 64-bit integer.

1. Or your code must be strictly ANSI C standard.
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The types long64 and ulong64 are defined to be a structure consisting of two 
fields, each an unsigned long word, named high and low. The high field is first if 
your machine is big endian; the low field is first if your machine is little endian.

You must define the functions shown in Table 8. If your platform supports floating 
point, you must also define the functions shown in Table 9.

Any of these functions can be implemented as a macro instead.

9.2 Alignment issues
When an object of Java type long or double is on the Java stack or in the constant 
pool, its address will be a multiple of 4.

Some hardware platforms (such as SPARC) require that 64-bit types be aligned so 
that their address is a multiple of 8.

If your platform requires that 64-bit integers be aligned on 8-byte boundaries, set

#define NEED_LONG_ALIGNMENT 1

2. See Jonathan Swift, Gulliver’s Travels, Part I: A Voyage to Lilliput, for more information on the big-endian, 
little-endian controversy.

TABLE 8 Implementing longs

Function or Constant Java equivalent

long64  ll_mul(long64 a, long64 b); a * b

long64  ll_div(long64 a, long64 b); a / b

long64  ll_rem(long64 a, long64 b); a % b

long64  ll_shl(long64 a, int b); a << b

long64  ll_shr(long64 a, int b); a >> b

long64  ll_ushr(long64 a, int b); a >>> b

TABLE 9 Implementing both longs and floats

Function or Constant Java equivalent

long64 float2ll(float f); (long)f

long64 double2ll(double d); (long)d

float ll2float(long64 a); (float)a

double ll2double(long64 a); (double)a
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If your platform requires double-precision floating point numbers be aligned on 8-
byte boundaries, set

#define NEED_DOUBLE_ALIGNMENT 1

The compiler can generates better code when these values are 0.
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CHAPTER 10

Floating-Point Support

This chapter contains an overview of the IEEE 754 floating-point standard, Java 
virtual machine floating-point semantics, and the porting effort required for the 
implementation of floating-point to various processor architectures. Additionally, 
the implementation of strictfp arithmetic operations is detailed.

Version 1.0 of the CLDC Specification did not require floating-point arithmetic in 
compliant implementations. However, the CLDC Specification Version 1.1 does 
require floating-point, and this chapter describes the implications for porting the 
floating-point implementation for KVM in CLDC 1.1.

10.1 Introduction
The Java programming language and the Java virtual machine support two 
floating-point types, 32-bit float and 64-bit double. The numerical results for 
operations performed on values of these types are defined by the IEEE 754 
standard for binary floating-point arithmetic (IEEE Std 754-1985). While many 
processor architectures also support IEEE 754, there can be complications mapping 
Java virtual machine floating-point operations to C code or to hardware 
instructions implementing those operations. Before describing those complications 
and their solutions, more background on IEEE 754 is necessary. 

10.1.1 IEEE 754 floating-point
Floating-point numbers are a subset of the real numbers; the representable finite 
floating-point numbers have sign, exponent, and significand fields.1

The numerical value of a finite floating-point number is 

(-1)sign·2exponent·significand

1. In other floating-point systems, the significand is called the mantissa.
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The sign field is 0 or 1. The exponent field is an integer; the significand field is a 
binary number greater than or equal to zero and less than two. The IEEE 754 
standard defines the ranges for the exponent and significand values for the float 
and double formats. The double format has more than twice the precision of 
float as well as a greater exponent range. To avoid multiple representations for 
the same numerical value, a floating-point number’s representation is normalized; 
that is, the exponent is adjusted to the least value so that the leading bit of the 
significand is 1 instead of 0. The significand is less than 1 only for subnormal values, 
which are values so small that an in-range exponent cannot be made small enough 
to normalize the value’s representation. 

Since floating-point numbers have a fixed amount of precision, there must be a 
rounding policy to decide which floating-point number to return when storing the 
exact result requires more bits than the precision of the floating-point format. For 
example, multiplying two floating-point values can lead to the exact product 
having twice as many bits as either input. The IEEE 754 default rounding policy 
used in the Java virtual machine is to return the floating-point value closest to the 
exact numerical result. However, not all operations have clear finite results. For 
example, what is 1/0 or 0/0? For such situations, the IEEE 754 standard has the 
special values infinity and NaN (not a number). A signed infinity is returned when 
the exact result is too big to represent (overflow) or when a finite non-zero value is 
divided by zero. A NaN is returned for invalid operations, such as 0/0 or sqrt(-1). 
By adding infinities and NaN, IEEE 754 arithmetic forms a closed system. For every 
set of inputs, an IEEE 754 arithmetic operation returns an IEEE 754 value. 

For two IEEE 754 numbers to be equivalent, they must either be the same non-finite 
value (+infinity, -infinity, NaN) or if both values are finite, each field of the 
floating-point numbers must be the same. 

10.1.2 Implementing Java virtual machine floating-
point semantics
Many processor architectures natively support IEEE 754 arithmetic on float and 
double formats. Therefore, there is often a straightforward mapping between Java 
virtual machine floating-point operations, C code implementing those operations, 
and floating-point instructions on the underlying processor. However, various 
complications are possible: 

■ The floating-point semantics of the Java virtual machine are tightly specified, 
much more tightly specified than C language floating-point semantics. 
Therefore, a C compiler could perform an “optimization” that was an allowed 
transformation in C but broke Java virtual machine semantics. For example, in 
the Java virtual machine and Java:

x + 0.0

cannot be replaced with

x
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since different answers can be generated.1 

Therefore, the portions of the KVM that implement Java virtual machine 
floating-point semantics should be compiled without aggressive optimization to 
help avoid such (in this case) unhelpful code transformations. Many C compilers 
also have separate flags affecting floating-point code generation, such as flags to 
improve floating-point consistency and make the generated code have semantics 
more closely resembling a literal translation of the source. Regardless of the 
processor architecture, using such flags might be necessary to implement Java 
virtual machine semantics in C code. 

■ Certain architectures provide floating-point instructions other than addition, 
subtraction, multiplication and division on float and double values. For 
example, many architectures provide a fused mac (fused multiply-accumulate) 
operation instead of (or perhaps in addition) to the standard arithmetic 
operations. Fused mac is a ternary operation that produces (a × b + c) with a 
single rounding error (as opposed to two rounding errors if the multiply and 
add are performed separately). The IA-32 (that is, x86) line of processors has a 
set of floating-point registers in the x87 FPU (floating-point unit) with both more 
range and more precision than double. 

Both fused mac and the extra range of the x87 registers necessitate extra care when 
implementing Java virtual machine semantics. 

10.1.3 Java virtual machine floating-point semantics: 
strictfp

There are actually two flavors of floating-point semantics in the Java virtual 
machine: FP-strict semantics and default semantics. FP-strict semantics are used if a 
method or constructor has the ACC_STRICT bit set in the access_flags field of the 
method_info structure.2 In Java, this bit gets set if a class or a method is declared 
strictfp. All the floating-point operands and results in FP-strict methods and 
constructors are exactly 32-bit float or 64-bit double quantities. 

In contrast, in default floating-point semantics, while floating-point variables must 
hold exactly float or double values, values on the operand stack are allowed, but 
not required, to have greater exponent range. 

The Java programming language provides the strictfp modifier, to be applied to 
the declaration of a class, interface or method containing variables that might take 
a floating-point value. If the strictfp modifier is used, any compile-time 
expression involving the variables of the declared class, interface or method is said 
to be FP-strict. To be FP-strict means that all intermediate floating-point values 
must be elements of a float value set or a double value set, implying that the 
results of all FP-strict expressions must be those predicted by IEEE 754 arithmetic 
1. In IEEE 754 floating-point, there is both -0.0 and +0.0. These values can be distinguished by division; 

1.0/-0.0 is negative infinity while 1.0/+ 0.0 is positive infinity. If x is -0.0, x + 0.0 is +0.0; adding + 0.0 to a 
number changes negative zero into positive zero while leaving other values unchanged. 

2. The strictfp Java modifier and the ACC_STRICT modifier were added in Java 2. Java classes generated 
before that time will not have FP-strict semantics. 
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on operands represented using float (single-precision) and double (double-
precision) formats. Within an expression that is not FP-strict, some leeway is 
granted for an implementation to use an extended exponent range to represent 
intermediate results. The net effect, roughly speaking, is that a calculation might 
produce “the correct answer” in situations where exclusive use of the float value 
set or double value set might result in overflow or underflow. 

For more details, see the The Java™ Virtual Machine Specification (Java Series), Second 
Edition by Tim Lindholm and Frank Yellin (Addison-Wesley, 1999) and the The 
Java™ Language Specification by James Gosling, Bill Joy, and Guy L. Steele (Addison-
Wesley, 1996). 

10.1.4 Floating-point architectures

10.1.4.1 Fused Mac

In general, a fused mac cannot be used to implement chained multiply and add 
instructions in the Java virtual machine since the rounding behavior will be 
different. This is true for both default and FP-strict semantics. However, even if an 
architecture only has fused mac instructions for floating-point, implementing the 
semantics of separate add and multiply is fairly direct. The result of (a + c) is the 
same as (a × 1.0 + c). The result of (a × b) is almost the same as (a × b + 0.0); it will 
be different if (a × b) results in a negative zero. Adding a positive zero would result 
in a positive zero instead of negative zero being returned for the logical product. 
This discrepancy is not allowed by Java virtual machine semantics. Assuming the 
“round to nearest” rounding mode is in effect, (a × b - 0.0) gives the same result as 
(a × b) even if (a × b) is zero. More generally, fused mac-based architectures usually 
have some special instruction idiom to avoid this discrepancy regardless of 
rounding mode. C compilers for fused mac platforms usually include a switch to 
disable the collapsing of chained multiplies and adds into fused macs.

10.1.4.2 x87 FPU

The floating-point load and store instructions on the x87 support three floating-
point formats 32-bit float (8-bit exponent), 64-bit double (11-bit exponent), and 
80-bit double extended (15 bit exponent). However, when values are loaded in 
the 80-bit registers, they always have 15-bit exponents even when the FPU is set to 
round to float or double precision. When implementing Java virtual machine 
instructions, the x87 FPU should be set to round to float or double precision. 
However, especially in FP-strict methods, the effect of the additional exponent bits 
must be compensated for. 
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10.1.4.2.1 FP-strict

FP-strict instructions must generate the same results everywhere, including x87 
FPUs. The extra exponent range complicates this since the overflow threshold (the 
point at which infinity is returned) and the underflow threshold (the point at which 
subnormal results are returned) differ with the larger exponent range. For example, 
if the extra exponent range were not an issue, the double computation d = a×b + c 
might get translated into a sequence of x87 instructions like

# Sample code 
fld a # load a onto register stack
fmul b # multiply a×b and put result on register stack
fadd c # add c to product of a and b and put result on register stack
fst d # store a×b+c from register stack into d

The problem with this code sequence is that the intermediate values a×b and 
(a×b) + c will not overflow or underflow the same way as pure double code since 
the intermediate values are kept in registers with larger exponent range. The first 
attempt at a solution stores each intermediate product to a double location in 
memory:

# Attempted Fix 1
fld a # load a onto register stack
fmul b # multiply a×b and put result on register stack
fst t1 # store a×b into a temp double location to restrict exponent
fld t1 # reload a×b with restricted exponent
fadd c # add c to product of a and b and put result on register stack
fst d # store a×b+c from register stack into d

This first attempted fix does preserve the proper overflow behavior for a×b. 
However, the underflow behavior is slightly wrong. Performing the multiply and 
rounding, storing to restrict the exponent (thus rounding again), and then 
reloading the stored value can give a different subnormal number than if the 
product were rounded only once to the final precision and range. The compute-store-
reload idiom works for addition and subtraction. However, multiplication and 
division both share this double-rounding-on-underflow hazard. Avoiding the 
hazard requires a few additional steps; however expressing the needed steps in a C 
program may be difficult. 

If the operand values are float instead of double, and if the FPU’s rounding 
precision is set to double precision, and the loads and stores are of float values, 
the store-reload idiom works for the four basic float arithmetic operations (add, 
subtract, multiply and divide). In the case of multiply, a double precision product of 
float operands is exact, so double-rounding is avoided. In general, double has 
enough additional precision over float that these double-rounding problems are 
all avoided. 
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To avoid double-rounding on underflow for double values, what would be a 
subnormal result in pure double must also be a subnormal in the register format 
with extended exponent range. This can be arranged by scaling one of the operands 
by a power of two.

# Attempted Fix 2
fld a # load a onto register stack
fmul SCALE_DOWN # scale a down 
fmul b # multiply a_scaled×b, put result on register stack

#  significand will have the right bits if a×b 
#  should be subnormal

fmul SCALE_UP # rescale product to restore the proper exponent 
fst t1 # store a×b into a temporary double location to

#  restrict exponent
fld t1 # reload a×b with restricted exponent
fadd c # add c to product of a and b 

#  and put result on register stack
fst d # store a×b+c from register stack into d

Multiplying by SCALE_DOWN and SCALE_UP ensures the right result when the 
product in pure double would be a subnormal. The store and reload to and from 
t1 is still needed to ensure an overflow to infinity occurs at the proper value. 

The magnitude of the exponent of SCALE_DOWN and SCALE_UP is the difference in 
the maximum exponent of the double format and the maximum exponent of the 
register format:

SCALE_DOWN = 2-(Emax register - Emax double) = 2-(16383 - 1023) = 2-15360

SCALE_UP = 2(Emax register - Emax double) = 2(16383 - 1023) = 215360

Unfortunately, these values are too large to represent as double values. However, 
they can be easily synthesized out of double values if the intermediate products 
are kept on the FPU stack with its large exponent range:

2-15360= (2-960)16) = ((((2-960)2)2)2)2

215360 = (2960)16) = ((((2960 )2)2)2)2

2-960 = 1.0261342003245941E-289 = longBitsToDouble(0x3f0000000000000)

2960 = 9.745314011399999E288 = longBitsToDouble(0x7bf0000000000000)

As 80-bit values, logically the final bit patterns from most to least significant bit, 
are:

215360  = 0x7bff 8000 0000 0000 0000

2-15360 = 0x03ff 8000 0000 0000 0000

Adjusting by the scaling factors is also needed to implement divide. The product or 
quotient must first be scaled down. Scaling up first will not preserve the underflow 
threshold. 
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10.1.4.2.2 Generating FP-strict code in C
If a Java virtual machine on the x87 is generating assembly or machine code 
directly, creating the code necessary for FP-strict semantics is straightforward. 
However, coaxing the needed instructions from C source can be challenging due to 
numerous factors: 

■ Some C compilers do not support a long double type corresponding to the 80-bit 
(double extended) format; they only support float and double. Therefore, 
the SCALE_DOWN and SCALE_UP factors must be created from double values. 

■ Although the scaling factors can be created from double values, the 
computations creating the scaling factors must occur on the x87 stack; any 
intermediate store to double would generate an infinity. 

■ The above two points imply that the scaling factors (logical constants) might 
have to be created at runtime. Therefore, the C compiler’s optimizer must be 
turned off to avoid unwanted constant folding. 

■ If the scaling factors are generated at runtime from double values, there is no 
guaranteed idiom to keep the intermediate values on the stack and to refer to 
other stack-only values, making using the successive squaring formula 
problematic. 

One approach to dealing with these issues is to generate the scaling factors by 
multiplying together sixteen copies of 2± 960 stored as a volatile variable. Declaring 
a variable volatile forces it to be reread every time it is used, foiling unwanted 
optimizations. However, this means that an FP-strict multiply or divide would 
require (32 + 2) multiplies in addition to the operation being implemented. If asm 
cannot be used to implement the FP-strict multiply and divide operations, it may 
be faster to use an integer-based software implementation of those operations. 

10.1.4.2.3 Default floating-point
Compared to FP-strict code, generating code with default floating-point semantics 
is simple. For default code, the scaling factors are not required and the stores and 
reloads are only necessary for variables. In other words, the stores and reloads are 
not necessary for quantities that live on the Java virtual machine operand stack. 

10.1.4.3 Other architectures
On architectures with only plain float and double arithmetic operations, 
mapping to Java virtual machine semantics to equivalent C code is not 
complicated. 
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10.2 Floating-point support in the virtual 
machine
For CLDC 1.1 compliant implementations, the floating-point functionality is always 
enabled by default. It can be disabled by changing the IMPLEMENTS_FLOAT flag in 
main.h. The majority of the support needed in the virtual machine for 
implementing floating-point is done to the Java bytecodes defined in 
bytecodes.c. The specific modifications needed are described in the sections 
below.

10.2.1 Floating-point bytecodes implementation 
The file bytecodes.c represents one of the major components that must be 
changed to support floating-point. This file contains Java bytecodes executed by 
the KVM interpreter. Many of the modifications involve checking for NaNs. 
Among the bytecodes that require modifications are D2I, D2L, F2I, and F2L. The 
modifications and checks for NaNs are described in Section 10.4 “Porting.” The x86 
specific changes are implemented in fp_bytecodes.c (located in directory kvm/
VmExtra/src/fp). Specific details of the changes are also documented with 
comments in that file.

10.3 CLDC 1.1 floating-point libraries and 
trigonometric functions 
This section describes the floating-point libraries and the trigonometric and other 
math functions that are now supported by KVM. The Java classes that are needed 
for floating-point support are described in the following table:

These files are not implementation-specific. 

TABLE 10 Java classes needed for floating-point

File Description

Float.java Supports floating-point arithmetic.

Double.java Supports double-precision floating-point arithmetic.

Math.java Additional trigonometric and other math functions.

FloatingDecimal.java Used to convert decimals and doubles to strings
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The table below lists the trigonometric function that are now implemented in the 
KVM for floating-point support. Listed with each function are the corresponding 
file(s) in which the function is implemented.

The implementation of the trigonometric functions is taken directly from the 
JDK1.3.1 sources with no changes except to the function names. The trigonometric 
files are specified in directory kvm/VmExtra/src/fp.

Note – You cannot use optimization when compiling the floating-point files. Doing 
so will cause incorrect results in the trigonometric functions. This means you 
cannot set FP_OPTIMIZATION_FLAG. Refer to Section 10.1.2 “Implementing Java 
virtual machine floating-point semantics” for further details.

10.4 Porting
The following sections summarize the porting effort required for the 
implementation of floating-point to various processor architectures. The biggest 
challenge in the porting effort is in the implementation for handling NaNs and 
infinity bounds checking. The key changes that are required on all platforms are 
essentially in the conversion of bytecodes D2I, D2L, F2I, and F2L. These bytecodes 
needed additional checks mandated by the Java™ Virtual Machine Specification to 
check for NaNs and infinity bounds, and to return the correct value for each of 
these cases. 

The Java™ Virtual Machine Specification (Java Series), Second Edition by Tim Lindholm 
and Frank Yellin (Addison-Wesley, 1999) states that for each of these conversion 
bytecodes, if a NaN value is being converted, the result of conversion is zero. If a 
value is of large magnitude or small magnitude (such as positive or negative 
infinity) the maximum or minimum value of the conversion type is the result. In all 

TABLE 11 Files implementing trigonometric and other math functions

Function File(s)

sin k_sin.c s_sin.c 

cos k_cos.c s_cos.c 

tan k_tan.c s_tan.c 

sqrt e_sqrt.c w_sqrt.c 

ceil s_ceil.c 

floor s_floor.c 

abs s_fabs.c
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other cases, the value is converted from one type to the other using the IEEE 754 
conversion rules. The values defined as NaN and infinity are described in the 
Java™ Virtual Machine Specification, §4.4.4 and §4.4.5.

10.4.1 SPARC
The SPARC architecture is IEEE 754 compliant and has direct support for float 
and double operations. Therefore, implementing floating-point on KVM/SPARC 
only requires additional checks for NaN and infinity in the conversion bytecodes, 
D2I, D2L, F2I, and F2L.

10.4.2 ARM 
The ARM CPU uses a IEEE 754 compliant software floating-point library. Similar to 
SPARC architecture, the only required changes are additional checks to the 
floating-point conversion bytecodes D2I, D2L, F2I, and F2L.

10.4.3 x86
The traditional x87 FPU is fully IEEE 754 compliant. However, the IEEE 754 
standard explicitly allows rounding to reduced precision, but greater exponent 
range, which does not always match the floating-point model used in the Java 
language and the JVM. Therefore, additional work is needed to implement floating-
point. Additionally, the P4 processor contains the SSE2 instruction set extension, 
which is another IEEE 754 compliant implementation. However, SSE2 is more 
amenable to Java’s semantics.

To implement floating-point for the x86 platform, checks involving NaNs are 
needed for the following Java bytecodes: FCMPL, FCMPG, DCMPL, DCMPG, 
FREM, and DREM. These bytecodes needed additional checks to behave as 
mentioned in the Java™ Virtual Machine Specification. The Java™ Virtual Machine 
Specification describes what each of these bytecodes should do or return when a 
NaN value is encountered.

The file fp_bytecodes.c under kvm/VmExtra/src/fp contains the x86-specific 
implementation for the floating-point bytecodes. Each function in this file 
implements an algorithm for a specific floating-point bytecode that needs 
modification. Each of these bytecodes check the value that is on the stack to see if it 
is a NaN. If a NaN value is encountered, it is handled as a special case according to 
the Java™ Virtual Machine Specification. These functions are executed only if the 
variable PROCESSOR_ARCHITECTURE_X86 is set in the platform-specific header 
file machine_md.h.
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10.4.3.1 strictfp implementation for x86

Due to the reasons mentioned in the above sections, the implementation of 
strictfp is quite a challenge for the x86 platform. The x86 is designed to operate 
on 80-bit double extended floating-point values rather than the 64-bit and 32-bit 
double and float values used in the Java programming language. The x86 can be 
made to round to float or double precision. Unfortunately, this rounding does 
not exactly emulate the pure float and double called for by Java, since an 
extended exponent range is available. The extended exponent range means the 
overflow and underflow thresholds are different than for pure float and double.

To implement strictfp, the bytecodes DMUL and DDIV must be changed. The 
problem is, while doing these operations on subnormal numbers (very small IEEE 
754 values with less precision than normal numbers) rounding occurs, producing 
an incorrect result. (Refer to 10.1.4.2.1, “FP-strict.”) In addition, double-rounding 
can occur if the obvious code generation algorithm is used. The solution is to 
implement the following algorithms for DMUL and DDIV.

Multiply (DMUL)
■ load multiplier

■ scale multiplier by multiplying multiplier by 2-15360

■ load multiplicand

■ multiply scaled multiplier by multiplicand

■ rescale product by 215360

■ store rescaled product

■ reload stored rescaled product

Divide (DDIV)

For strictfp floating-point on x86, the initial scaled quotient must be smaller than 
the actual quotient for the rounding to work properly. Thus, the algorithm is:

■ load dividend

■ load divisor

■ compute initial_quotient by either:

■ initial_quotient = (2-15360 × dividend)/divisor

■ initial_quotient = dividend/(divisor × 215360)

■ rescale initial_quotient to get the right significand bits. Compute:

quotient =  initial_quotient × 215360

■ store rescaled quotient

■ reload stored rescaled quotient
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The bytecodes for FADD and FSUB did not need to be changed since if those 
operations have subnormal results, the results are exact (that is, no rounding 
occurs).
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CHAPTER 11

Native Code

A Java virtual machine commonly needs access to various native functions in order 
to interact with the outside world. For instance, all the low-level graphics 
functions, file access functions, networking functions, or other similar routines that 
depend on the underlying operating system services typically need to be written in 
native code.

The way these native functions are made available to the Java virtual machine can 
vary from one virtual machine implementation to another. In order to minimize the 
work that is needed when porting the native functions, the Java Native Interface1 
(JNI) standard was created. The Java Native Interface generally serves two 
purposes: 1) JNI serves as a common interface for virtual machine implementers so 
that the same native functions will work unmodified with different virtual 
machines; 2) JNI provides Java-level APIs that make it possible for a Java 
programmer to dynamically load libraries and access native functions in those 
libraries.

Unfortunately, because of its general nature, JNI is rather expensive and introduces 
a significant memory and performance overhead to native function calls. Also, the 
ability to dynamically load and call arbitrary native functions from Java programs 
could pose security problems in the absence of the full Java 2 security model.

KVM does not support the Java Native Interface (JNI). Rather, KVM supports an 
interface called K Native Interface (KNI), which implements a logical subset of JNI 
that is significantly more efficient in terms of performance and memory 
consumption. In addition, KVM also supports an older interface that allows native 
functions to be added to the KVM in a VM-specific fashion. Information on KNI is 
provided below in Section 11.1 “Using the K Native Interface (KNI)”. Information 
for writing native functions using the old-style native interface is provided in 
Section 11.2 “Implementing old-style native methods.”

1. The Java Native Interface: Programmer’s Guide and Specification (Java Series) by Sheng Liang (Addison Wesley, 
1999).
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11.1 Using the K Native Interface (KNI)
Starting from KVM 1.0.4, KVM has a new interface for writing native functions. 
The high-level goal of this new interface, K Native Interface (KNI), is to allow native 
functions to be added to the KVM (and other small-footprint virtual machines) in a 
manner that is both highly efficient and fully independent of the internal structures 
of the virtual machine. The K Native Interface (KNI) Specification, (Sun Microsystems, 
Inc., 2001) (KNI Specification) defines a logical subset of the Java Native Interface 
(JNI) that is well-suited for low-power, memory-constrained devices. KNI follows 
the function naming conventions and other aspects of the JNI as far as this is 
possible and reasonable within the strict memory limits of CLDC target devices 
and in the absence of the full Java 2 security model. Since KNI is intended to be 
significantly more lightweight than JNI, some aspects of the interface, such as the 
parameter passing conventions, have been completely redesigned and are 
significantly different from JNI.

The K Native Interface is described in more detail in the KNI Specification. Please 
refer to this specification to learn about the K Native Interface and its usage.

Things to remember when getting started with KNI: One of the key goals of the 
KNI is to isolate the native function programmer from the implementation details 
of the virtual machine. Instead of writing native functions using KVM-specific 
functions and data structures (as required by the old-style native interface 
described in Section 11.2 “Implementing old-style native methods”), KNI allows 
native functions to be written using a set of functions that operate identically and 
efficiently across a wide variety of virtual machines. To ensure portability of native 
code, the native function programmer shall not use any KVM-specific include files or 
KVM-specific functions or data types. Rather, the programmer must include the file 
“kni.h” and use functions and data types defined in that file.

11.2 Implementing old-style native methods

Note – It is highly recommended that you use KNI for writing native functions to 
the KVM. The use of the old-style API is strongly discouraged for all other 
purposes than for writing asynchronous native functions (Section 11.4 
“Asynchronous native methods”).

WARNING: You should not write old-style native methods unless you have 
thoroughly read through the implementation and understand its structures. Most 
of the material in this porting guide is moderately straightforward. The material in 
this subsection is not!
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Old-style native methods must be written extremely carefully. Inattention to detail 
will cause fatal errors in the virtual machine.

11.2.1 Include files
Your code containing old-style native functions should begin with the line

#include <global.h>

which causes all include files that are part of KVM to be included. You might also 
need to #include additional files.

11.2.2 Accessing arguments from old-style native 
methods
When a native method is called, its arguments are on top of the Java stack. A static 
method’s arguments should be popped from the stack in the reverse order from 
which they were pushed. CODE EXAMPLE 3 shows an example of this coding 
style:

CODE EXAMPLE 3 Handling arguments of native static methods

Java code:

static native void
drawRectangle(int x, int y, int width, int height);

Native implementation:

static void Java_com_sun_kjava_Graphics_drawRectangle() {
int height = popStack();
int width = popStack();
int y = popStack();
int x = popStack();
windowSystemDrawRectangle(x, y, width, height);

}

An instance method (non-static method) must pop the this argument off the stack 
after it has popped the rest of the arguments. 

Note – Failing to pop the this argument in a native instance method will almost 
surely cause a fatal error in the virtual machine.
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Table 12 shows the macros that should be used to pop arguments off the stack:

11.2.3 Returning a result from an old-style native 
function
If a native method returns a result, it must push that result onto the stack. The 
native code should use the appropriate macro shown in Table 13 to push the result 
back onto the stack:

11.2.4 Shortcuts
Some native code uses the macro topStack instead of popping the last argument 
off the stack. It then sets topStack to the value it wants to return.

This practice is not encouraged. It should only be used for “one-liners” that access 
the argument and return the value in a single statement. pushStack and 
popStack cannot be used in this case, since C would not guarantee their order of 
evaluation.

In general, it is safer to pop the value, perform the calculation, and push the value 
back onto the stack as three separate steps.

TABLE 12 Macros for popping arguments from the stack

C type Macro for popping

char, byte, int, long popStack()

float popStackAsType(float)

long64, ulong64 popLong()

double popDouble()

pointerType popStackAsType(pointerType)

TABLE 13 Macros for pushing arguments onto the stack

C type Macro for pushing

char, byte, int, long pushStack()

float pushStackAsType(float)

long64, ulong64 pushLong()

double pushDouble()

pointerType pushStackAsType(pointerType)
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11.2.5 Callbacks
Native code cannot call back into Java code. KVM provides a mechanism by which 
native code can alter the interpreter state to begin executing a new piece of code. 
Upon finishing executing that code, the mechanism can indicate a new C function 
which should be called.

11.2.6 Exception handling in old-style native code
If the native code needs to throw an error or exception, it should call the function

void raiseException(const char* exceptionClassName)

where the exceptionClassName argument is the exception class or error 
class.

11.2.7 Useful functions in old-style native code
Other useful functions that a native method might need to call are the following:

■ void fatalError(const char* errorMessage);
The code calls this method to indicate that a serious error has occurred. 
The errorMessage argument is a brief explanation of the problem. This 
method does not return.

■ CLASS getClass(const char *name);
This method returns the class whose name is the indicated argument. You might 
want to coerce the return result to be an INSTANCE_CLASS or an ARRAY_CLASS.

■ STRING_INSTANCE instantiateString(const char* string, 
int length);

This method converts the given C string into a Java string.

■ char *getStringContents(STRING_INSTANCE string);
The instance argument must be a Java string. It is converted into a null-
terminated C string, and returned as the result.

The string is placed into a global buffer. If your code must hold onto this string 
for any length of time, you must copy the buffer into stack-allocated storage, or 
allocate space from the Java heap.

■ INSTANCE instantiate(INSTANCE_CLASS class);
Creates a new Java instance of the specified class.

■ ARRAY instantiateArray(ARRAY_CLASS arrayClass, long length);
Creates a Java array of the specified type and length.
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■ SHORTARRAY createCharArray(const char* utf8stringArg, 
int utf8length, 
int* unicodelengthP,
bool_t is_permanent);

Creates a Java character array from the C string passed as an argument.

■ char* mallocBytes(long sizeInBytes);
Allocates a memory block in the garbage-collected heap that is big enough to 
hold sizeInBytes number of bytes. You can create a temporary root 
(Section 11.2.8 “Garbage collection issues”) to prevent the memory block from 
being garbage-collected.

11.2.8 Garbage collection issues
The C stack is not scanned when the KVM performs a garbage collection. If your 
native code allocates new Java objects, you must take special precautions to 
prevent your new Java objects from being garbage collected inadvertently.

Since the release 1.0.2, KVM includes a compacting garbage collector. Any time that 
your native code performs an allocation, objects in the Java heap can move. This 
includes any arguments passed to your native function and any previous heap 
allocations performed by your native code.

Note – We strongly recommend that you do not write native methods that perform 
allocation from the Java heap. You greatly increase the chances that your code will 
have hard-to-find and hard-to-reproduce bugs.

Note – If, for example, you need to create a structure, it is better to create that 
structure in Java code, and pass it as an argument to the native code.

If your code must perform allocation, it is important that you

■ Pop all arguments off the stack before you perform any allocation.

■ Push the return value (if any) onto the stack after you have performed any 
allocation.

The garbage collector can get erroneous results if an allocation occurs while an 
argument or return value is on the Java stack. The rest of this chapter describes 
how your code can interact correctly with the garbage collector.

11.2.8.1 Heap Space and Permanent Space

In order to simplify the garbage collector, the KVM’s memory is divided into two 
spaces: “permanent space” and “heap space”.
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All objects created in permanent space are, well, permanent. These objects are

■ never freed by the garbage collector,

■ never scanned by the garbage collector to see if they contain pointers to other 
objects,

■ never relocated.

Among the objects that are allocated in permanent space are

■ class structures,

■ Java byte codes,

■ method tables,

■ field tables,

■ interned instances of java.lang.String (but not all strings).

These objects are never moved and never freed after they are created.

Structures that have a possibly limited lifetime are allocated in heap space. Among 
these are

■ all Java instances (except for interned Strings),

■ threads,

■ stack chunks.

These structures are liable to move any time an allocation occurs. Your code must 
be following the rules specified in the following subsections to ensure that your 
code lives happily with the garbage collector.

11.2.8.2 Asserting no allocation

The KVM provides the two macros ASSERTING_NO_ALLOCATION and 
END_ASSERTING_NO_ALLOCATION, which are used as shown in 
CODE EXAMPLE 4:

CODE EXAMPLE 4 Forbidding garbage collection

ASSERTING_NO_ALLOCATION
non allocating code

END_ASSERTING_NO_ALLOCATION;

These macros are provided for use only in DEBUG mode to guarantee that no 
allocation is performed by the code between the ASSERTING... and the 
END_ASSERTING... macro.

If your code is compiled with INCLUDEDEBUGCODE set to a non-zero value, then 
any allocation inside the specified code causes a fatal error.

If you use the macros, make sure that the non-allocating code inside the macros 
does not perform a return. The macro END_ASSERTING_NO_ALLOCATION 
contains cleanup code that must be executed.
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You are encouraged to use these macros to indicate safe regions of code in which 
heap-allocated objects will not move.

11.2.8.3 Handles in old-style native functions

To deal with the fact that heap-allocated objects in the KVM can move, the garbage 
collector makes use of temporary “handles.” A handle is an indirect pointer to an 
object. Rather than being the address of the object itself, a handle is the address of 
a memory location that contains the address of the object.

The memory location that contains the address of the object must not itself be in 
the Java heap. In general, it is the address of a variable (for global roots) or the 
address of a location on the C stack (for temporary roots).

■ If the object is possibly in the Java heap, then the memory location that contains 
the address of the object must be registered with the garbage collector. It can 
either be a temporary root (see §11.2.8.4) or a permanent root (see §11.2.8.5).

■ If the object is not in the Java heap, then the handle does not need to be 
registered with the garbage collector.

All type names in the KVM that end with _HANDLE indicate handles. If an 
argument has a handle as one of its arguments, the argument must be an indirect 
pointer, and must be registered with the garbage collector if the object could be in 
the Java heap.

CODE EXAMPLE 5 shows an example:

CODE EXAMPLE 5 Creating a handle

CLASS getClassX(CHAR_HANDLE name, int start, int length);

/* Case 1, We are calling it with an argument that is known */
/*         not to be in the heap. */
const char *x = “java/lang/Object”;
result = getClassX(&x, 0, strlen(x));

/* Case 2. We are calling it with a heap argument */
START_TEMPORARY_ROOTS

DECLARE_TEMPORARY_ROOT(char *, x, mallocBytes(100));
sprintf(x, “java/lang/%s”, arg);
result = getClassX(&x, 0, strlen(x));

END_TEMPORARY_ROOTS
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11.2.8.4 Temporary Roots

The most common method is to use START_TEMPORARY_ROOTS and 
END_TEMPORARY_ROOTS to delimit a region of code. Within this region of code, the 
macro

DECLARE_TEMPORARY_ROOT(type, variable,value)

creates a local variable of the specified type with the specified initial value. The 
value must either be a pointer to an object in the heap, or it must be a value that is 
clearly not in the heap (such as NULL, a pointer to permanent space, or the like).1 
The value &variable is registered with the garbage collector as a temporary root. 

You are allowed to change the value of variable, provided that any new value is 
always either a pointer to an object in the heap, or a value that is clearly not in the 
heap.

The garbage collector ensures whenever a garbage collection occurs, the value of 
the variable is updated if the value has moved. In addition, &variable is a 
handle, and can be passed as an argument to any function that expects a handle.

Your code must not return. The END_TEMPORARY_ROOTS contains cleanup code 
that must be executed.

CODE EXAMPLE 6 below shows some sample code for a native method that takes 
a String and two integers as arguments, and which must allocate a temporary 
buffer.

CODE EXAMPLE 6 Temporary roots

START_TEMPORARY_ROOTS
int y = popStack();
int x = popStack();
DECLARE_TEMPORARY_ROOT(STRING_INSTANCE, string, 

popStackAsType(STRING_INSTANCE));
DECLARE_TEMPORARY_ROOT(char*, buffer, mallocBytes(100));
/* code that might perform allocation */

END_TEMPORARY_ROOTS

If the code clearly cannot perform any allocation, then you could instead have 
written

char* buffer = mallocBytes(100);

Less commonly used is the macro

DECLARE_TEMPORARY_ROOT_FROM_BASE(type, var, value, base)

In this case base must be a pointer to an object in the heap, and value must be a 
pointer into the middle of the object. The variable var is assigned the value value. 
The garbage collector will treat base as a root. If base is moved by the garbage 
collector, the value of var will be adjusted appropriately.

1. The main purpose of this limitation is that the variable should not have a random integer as its value, and 
that the variable must be initialized. 
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11.2.8.5 Global roots

If your code initializes a C variable to point to an object in the Java heap, you can 
use the code shown in CODE EXAMPLE 7. There is currently no function for 
removing a variable from the set of global roots.

CODE EXAMPLE 7 Creating a global root

variable = <value>
makeGlobalRoot(&(cell **)variable);

This code ensures that the garbage collector knows that the specified variable 
contains a value that must be protected from garbage collection. If the garbage 
collector moves the object, the variable is updated to point to the new value.

11.2.8.6 Debugging your native code

A special garbage collector is provided to help you debug your native code and to 
ensure that it does not have any garbage collection problems. You access this 
garbage collector by replacing the file collector.c with collectorDebug.c. In 
addition, you should set the compiler flags INCLUDEDEBUGCODE and 
EXCESSIVE_GARBAGE_COLLECTION to 1.

This replaces the compact-in-place garbage collector with a 10-space Cheney style1 
garbage collection algorithm. A garbage-collection will occur on every allocation, 
and also on some operations that might have allocated but didn’t. Every object 
moves on every garbage collection. In addition, this code makes use of memory-
protection so that any attempts to read or write a bad pointer will generate a 
memory fault. 

This code uses the following implementation-dependent functions:

void* allocateVirtualMemory_md(long size);
void  freeVirtualMemory_md(void *address, long size);
void  protectVirtualMemory_md(void *address, long size, 

int protection);

Implementations of these three functions for Windows and for Unix are provided. 
You must implement these functions on your target platform.

11.2.8.7 Two-space Cheney garbage collector

The file collectorDebug.c (see §11.2.8.6) also includes an implementation of a 
two-space non-debugging Cheney garbage collector. You get this implementation 
by setting the compiler flag CHENEY_TWO_SPACE to a non-zero value.

1. C.J. Cheney. A non-recursive list compacting algorithm. Communications of the ACM, 13(11):677-8, 
November 1970.



Chapter 11 Native Code 69

The Cheney collector is smaller and faster than the standard garbage collector. 
However, it uses twice as much heap space. If your implementations has a lot of 
available memory, but needs a faster garbage collector, you might consider using 
this garbage collector.

This collector is not supported by Sun, and is provided as is.

11.2.9 Initialization and reinitialization of global 
variables
Generally, the C language guarantees that all global and static variables are 
initialized to 0 (zero).

The current implementation is designed to work within an embedded 
environment. For example, on the PalmOS, the user can start the virtual machine, 
exit a program, and then restart the virtual machine with a different set of 
arguments. There is no re-initialization of global or static variables between the two 
runs.

In general, your code cannot assume the initial value of any variable. You have 
several options for determining when it is necessary to perform one-time only 
initialization.

■ You can use the function InitializeNativeCode() to either initialize your 
variables, or to set a flag indicating that initialization needs to be performed.

■ If a private native method is called as part of static initialization of a class, the 
method’s native implementation will be called the first time the class is used. 
The native implementation can perform any initialization necessary for the class.

■ If a variable is part of the global root set (see makeGlobalRoot() above), its 
value is guaranteed to be 0 the next time that the virtual machine is run.

11.3 Native code lookup tables
Regardless of whether you use the KNI (Section 11.1 “Using the K Native Interface 
(KNI)”) or the old-style native method implementation technology (Section 11.2 
“Implementing old-style native methods”), as part of the build process you must 
create the lookup tables that map methods to the corresponding native 
implementation.

The JavaCodeCompact (JCC) generates these tables automatically. You should use 
this utility to generate the lookup tables whether or not you are using the other 
features of JavaCodeCompact.
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JavaCodeCompact is more fully described in Chapter 14. The specific details for 
creating the file containing the lookup tables can be found in Section 14.5 
“Executing JavaCodeCompact.”

The name of the C function that implements a native method must be the same 
name that JNI1 would assign to the native method.

11.4 Asynchronous native methods

Note – The KNI implementation does not allow asynchronous native methods to 
be written using the KNI API. In order to write asynchronous native methods for 
the KVM, you must use the old-style native function interface as described in this 
section.

From the operating system viewpoint, KVM is just one process (C program) with 
only one native thread of execution. The multithreading capabilities of KVM have 
been implemented entirely in software without utilizing the possible multitasking 
capabilities of the underlying operating system. This approach not only makes the 
virtual machine highly portable and independent of the operating system, but also 
greatly simplifies the virtual machine design and improves the readability of the 
codebase, as the virtual machine designer does not have to worry about mutual 
exclusion and other problems typically associated with multithreaded software.

However, an unfortunate side effect of the approach described above is that by 
default, all native methods in KVM are “blocking.” This means that when a native 
function is called from the virtual machine, all the threads in the VM stop 
executing until the native method completes execution.

As a general guideline, all the native functions called from KVM should be written 
so that they complete their execution as soon as possible. However, in many 
environments this is not desirable or fully possible. For this reason, KVM includes 
an implementation of “asynchronous native methods” described below.

11.4.1 Design of asynchronous methods
The standard implementation of KVM runs as a single “task” from the operating 
system’s point of view. If a native method performs an operation that can block, the 
entire KVM blocks.

1. See The Java Native Interface: Programmer’s Guide and Specification (Java Series) by Sheng Liang (Addison 
Wesley, 1999), for complete information on the JNI naming scheme. This information is available online at 
http://java.sun.com/docs/books/jni/index.html

http://java.sun.com/docs/books/jni/index.html
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Asynchronous native methods are intended to solve this problem. When such a 
native method is called, the operation is performed “off-line” in an 
implementation-dependent manner. Other Java threads can continue running 
normally. When the native call finishes, the Java thread that originally called the 
native method continues.

To use asynchronous native methods, you must include

#define ASYNCHRONOUS_NATIVE_FUNCTIONS 1

in your machine-dependent include file.

Asynchronous native methods cannot be defined in the same file as normal native 
methods. In addition to their normal includes, they must also add the include file 
async.h.

Asynchronous methods should always have the following form:

ASYNC_FUNCTION_START(functionname)
code

ASYNC_FUNCTION_END

Your code must never use pushStack(), popStack(), topStack, or any macro 
or function that references the stack pointer, the frame pointer, or the current 
thread. Instead, you must use the alternative macros shown in Table 14.

In addition, your code must not perform a “return.” It must complete through the 
end, since ASYNC_FUNCTION_END may generate some necessary cleanup code.

All the macros in Table 14 have been designed so that if the symbol 
ASYNCHRONOUS_NATIVE_FUNCTIONS is 0, the asynchronous method compiles into 
a normal native method.

TABLE 14 Macros used in asynchronous methods

Native function macro Asynchronous native function macro

popStack ASYNC_popStack

pushStack ASYNC_pushStack

popLong ASYNC_popLong

pushLong ASYNC_pushLong

popStackAsType ASYNC_popStackAsType

pushStackAsType ASYNC_pushStackAsType

raiseException ASYNC_raiseException

topStack do not use this macro
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It is also important to note that unlike regular native methods, asynchronous native 
methods cannot allocate any memory from the Java heap. Because of this limitation, 
extra caution is often necessary when writing asynchronous native methods, since 
many internal routines in KVM may indirectly allocate memory from the Java 
heap.

Note – IMPORTANT: We repeat that asynchronous native methods must not 
allocate memory from the Java heap. Make sure that you read the paragraph above.

If you use asynchronous native methods, you must define the following machine-
specific functions.

■ void Yield_md()

Pause this operating system task momentarily and allow other tasks to run.

■ void CallAsyncNativeFunction_md(ASYNCIOCB *iocb,  
void(*afp)(ASYNCIOCB *))

Call an asynchronous native function. This function is called by the 
ASYNC_FUNCTION_START macro to start a new asynchronous function. The 
function takes as a parameter a data structure that is used by the garbage 
collector to keep up to date object pointers used by the native code, and a 
function to call. This function will typically start a new native thread and have 
that call the supplied function with the ASYNCIOCB as its parameter.

■ enterSystemCriticalSection()
exitSystemCriticalSection()

Enter or exit a critical section. The operating system must guarantee that at most 
one operating system task is allowed to be inside the critical section at a time.

11.4.2 Implementation of asynchronous methods
We envision two possible implementations of asynchronous methods.

In the current reference implementation, the function 
CallAsyncNativeFunction_md spawns off a separate operating system task 
which performs the indicated function. For example, in a Posix implementation one 
could use pthread_create.

CODE EXAMPLE 8 below shows one possible implementation of a method
int readBytes(byte[] dst, int offset, int length)
using this style of asynchronous native methods. This particular example assumes 
that the garbage collector does not move objects.
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CODE EXAMPLE 8 Asynchronous implementation of ReadBytes

ASYNC_FUNCTION_START(ReadBytes)
long length = ASYNC_popStack();
long offset = ASYNC_popStack();
BYTEARRAY dst = ASYNC_popStackAsType(BYTEARRAY);
INSTANCE instance = ASYNC_popStackAsType(INSTANCE);/* this*/
long fd = getFD(instance);
ASYNC_enableGarbageCollection();
length = read(fd, dst->bdata + offset, length);
ASYNC_disableGarbageCollection();
ASYNC_pushStack((length == 0) ? -1 : length);

ASYNC_FUNCTION_END

In an alternative implementation (CODE EXAMPLE 9), 
CallAsyncNativeFunction_md simply calls the function f directly. It assumes 
that the function f starts an operation, but does not wait for its completion. The 
operating system is required to provide some sort of interrupt or callback to 
indicate when the operation is complete.

The second implementation is far more operating system-dependent. It might be 
impossible to write native methods that can work both synchronously and 
asynchronously, depending on the value of a flag.

CODE EXAMPLE 9 Alternative asynchronous implementation of ReadBytes

static void ReadBytes(THREAD thisThread)
{

long length = ASYNC_popStack();
long offset = ASYNC_popStack();
BYTEARRAY dst = ASYNC_popStackAsType(BYTEARRAY);
INSTANCE instance = ASYNC_popStackAsType(INSTANCE);
long fd = getFD(instance);
THREAD thisThread = CurrentThread;
/* Call OS to perform I/O. Perform callback when done. */
AsyncRead(fd, p + offset, length, ReadBytesDone,thisThread);

}

/* Callback function when I/O is finished */
static void ReadBytesDone(void *parm, int length)
{

THREAD thisThread = (THREAD)parm;
ASYNC_pushStack((length == 0) ? -1 : length);
ASYNC_RESUME_THREAD();

}

Refer to Section 12.1.4 “Asynchronous notification,” for further information on 
writing asynchronous code.
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CHAPTER 12

Event Handling

12.1 High-level description
The Java Virtual Machine Specification does not define how the virtual machine 
interacts with events that arrive from the host operating system or from the target 
device. The KVM implementation, however, provides a variety of mechanisms that 
were designed to facilitate the integration of the KVM with the event system 
mechanisms of the host operating system or device.

There are four ways in which notification and handling of events can be 
accomplished in KVM:

1. Synchronous notification (blocking).

2. Polling in Java code.

3. Polling in the bytecode interpreter.

4. Asynchronous notification.

Different solutions may be appropriate for different ports of the KVM, depending 
on which user interface libraries are supported, what kinds of networking libraries 
are used, and so forth.

12.1.1 Synchronous notification (blocking)
By synchronous notification we refer to a situation in which the KVM performs 
event handling by calling a native I/O or event system function directly from the 
virtual machine. Since the KVM has only one physical thread of control inside the 
virtual machine, no other Java threads can be processed while the native function is 
being executed, and no VM system functions such as garbage collection can occur 
either. This is the simplest form of event notification, but there are many situations 
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in which this solution is quite acceptable, provided that the person designing the 
native functions is careful enough to keep the native functions as short and efficient 
as possible.

For instance, writing a datagram into the network can typically be performed 
efficiently using this approach, since typically the datagram is sent to a network 
stack that contains a buffer and the time spent waiting for the event to complete is 
very small. In contrast, reading a datagram is often a very different story, and is 
often handled better using the other solutions described below. Using a native 
function to wait until a whole datagram is received would block the whole KVM 
while the read operation is in progress.

12.1.2 Polling in Java code
Often event handling can be implemented efficiently using a combination of native 
and Java code. This is a simple way to allow other Java threads to execute while 
waiting for an event to complete. When using this approach, a polling Java loop is 
normally put somewhere in the Java runtime libraries so that the loop is hidden 
from applications. The normal procedure is for the runtime library to initiate a 
short native I/O operation and then repeatedly query the status of the I/O 
operation until it is finished. The polling Java code loop should always contain a 
call to Thread.yield so that other Java threads can be allowed to run efficiently.

This method of waiting for event notification is very easy to implement and is free 
of any complexities typically associated with genuinely asynchronous threads 
(such as requiring critical sections, semaphores or monitors.) There are two 
disadvantages with this design. First, CPU cycles are needed to perform the Java-
level polling that could otherwise be used to run application code (although the 
overhead is usually very small.) Second, due to the interpretation overhead, there 
may be some extra latency associated with event notification (especially if you 
forget to call Thread.yield in the polling Java code loop.) Again, this overhead is 
usually negligible in all but most time-critical applications.

12.1.3 Polling in the bytecode interpreter
The third approach to implement event handling is to use the bytecode interpreter 
periodically make calls to the native event handling operations. This approach is a 
variation of the synchronous notification approach described above. This approach 
was originally used extensively in the KVM, for example, to implement GUI event 
handling for the Palm platform.

In this approach, a native event handling function is called periodically from the 
interpreter loop. For performance reasons this is not normally done before every 
bytecode, but every few hundred bytecodes or so. This way the cost of performing 
event handling is well amortized. By changing the number of bytecodes executed 
before calling the event handling code, the virtual machine designer can control the 
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latency of event delivery versus the CPU time spent looking for a new event. The 
smaller the number, the smaller latency and the larger CPU overhead. A large 
number reduces CPU overhead but increases the latency in event handling.

The advantage of this approach is that the cost in performance is less than polling 
in Java, and the event notification latency is more predictable and controllable. The 
way this approach works is closely related to asynchronous notification described 
in the next subsection.

12.1.4 Asynchronous notification
The original KVM implementation supported only the three event handling 
implementations discussed above. However, in order to support truly 
asynchronous event handling, some new mechanisms have been introduced.

By asynchronous notification we refer to a situation in which event handling can 
occur in parallel while the virtual machine continues its execution. This is generally 
the most efficient event handling approach and will typically result in a very low 
notification latency. However, this approach generally requires that the underlying 
operating system provides the appropriate facilities for implementing 
asynchronous event handling. Such facilities may not be available in all operating 
systems. Also, this approach is quite a bit more complex to implement, as the 
virtual machine designer must be aware of possible locking and mutual exclusion 
issues. The reference implementation provides some examples that can be used as a 
starting point when implementing more device-specific event handling operations.

The general procedure in asynchronous notification is as follows. A thread calls a 
native function to start an I/O operation. The native code then suspends the 
thread's execution and immediately exits back to the interpreter loop, letting other 
threads continue execution. The interpreter then selects a new thread to run. Some 
time later an asynchronous event occurs and as a result some native code is 
executed which resumes the suspended thread. The interpreter then restarts the 
execution of the thread that had been waiting for an event to occur.

At the implementation level, there are two ways to implement such asynchronous 
notification. One is to use native (operating system) threads, and the other is to use 
some kind of software interrupt, callback routine or a polling routine.

In the first case, before the native function is called and the Java thread is 
suspended, a new operating system thread is created (or reawakened) and it is this 
thread which enters the native function. There is now an additional native thread 
of control running inside the virtual machine. After the native I/O thread is 
started, the order of execution inside the virtual machine is no longer fully 
deterministic, but depends on the occurrence of external events. Typically, the 
original thread starts executing another Java thread in the interpreter loop, and the 
new thread starts the I/O operation with what is almost always a blocking I/O 
operation to the operating system.
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It is important to note that the native I/O function will execute out of context 
meaning that the context of the virtual machine will be a different thread. A special 
set of C macros were written that will hide this fact for the most part, but special 
care should be taken to be sure that no contextual pointers are used in this routine. 
When the blocking call is finished the native I/O thread resumes execution and 
unblocks the Java thread it was representing. The Java thread is then rescheduled, 
and the native I/O thread is either destroyed, or placed in a dormant state until it 
needs to be used again. The Win32 port of the KVM reference implementation does 
this by creating a pool of I/O threads that are reused when 
I/O is to be performed.

The second implementation of asynchronous event handling can be done by 
utilizing callback functions associated with I/O requests. Here the native code is 
entered using the normal interpreter thread, I/O is started and then when the I/O 
operation is completed a callback routine is called by the operating system and the 
Java thread is unsuspended. In this scenario the native code is split into two 
routines, the first being a routine that starts the I/O operation and the second 
invoked when I/O is completed. In this case the first routine runs in the context of 
the calling Java thread, and the second one does not.

The final, less efficient variation of asynchronous event handling is where the I/O 
routine is polled for completion by the interpreter loop. This is very similar to the 
callback approach except that the second routine is called repeatedly by the 
interpreter to check if the I/O has finished. Eventually when the I/O operation has 
completed the routine unblocks the waiting Java thread. This calling of the native 
code by the interpreter is always done even when there are no pending events, and 
the native code must determine what Java threads should be restarted.

Synchronization issues. It is very important to remember that in the cases where a 
separate native event handling thread or callback routine is used, the code for 
event handling may interrupt the virtual machine at any point. Therefore, the 
person porting the virtual machine must remember to add critical sections, 
monitors or semaphores to all locations where the program may be manipulating 
common data structures and a possible mutual exclusion problem might occur. The 
most obvious shared data structures are the queues of suspended and active Java 
threads. These are always manipulated using special routine in the virtual machine 
that is already properly synchronized. If there are any other shared data structures 
they must be synchronized in the native code. Failure to do this correctly will 
produce spurious bugs that are very hard to debug.
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12.2 Parameter passing and garbage 
collection issues
When native event handling code is called, its parameters will be on the stack for 
the calling Java thread. These are popped off the stack by the native code, and the 
if there is a result value to be returned this is pushed onto the Java stack just prior 
to resuming the execution of the thread. Native parameter passing issues are 
discussed in Chapter 11.

Because native event handling code can access object memory, there are possible 
garbage collection issues especially when running long, asynchronous I/O 
operations. In general, the garbage collector is prevented from running when there 
is any native code is running. This is a problem when certain long I/O operations 
are performed. The most obvious case is waiting for a incoming network request. 
To solve this problem two functions called decrementAsyncCount and 
incrementAsyncCount are provided. The first allows the garbage collector to 
start, and the second prevents the collector from starting, and waits for it to stop if 
it was running.

It should be noted that if an object reference is passed to a native method, but no 
other reference to it exists in Java code after the call to incrementAsyncCount, 
the object could be reclaimed accidentally by the garbage collector. It is hard to 
think of a realistic scenario where this could occur, but the possibility should be 
kept in mind. A possible example of such code is the following:

native read(byte[]);
void skipBytes(int n) {
    read(new byte[n]);
}

Here the only reference to the byte array object exists on the parameter stack to the 
native function. If the native code calls incrementAsyncCount after popping the 
parameter from the stack the array could be garbage collected.

12.3 Implementation in KVM
The event handling implementation in KVM is composed of two main layers that 
both need to be taken into account when porting the KVM onto new hardware 
platforms.

At the top of the interpreter loop is the following code (starting from KVM 1.0.2, 
this code is actually located in macros):

if (isTimeToReschedule())
reschedule();
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The standard rescheduling code performs the following operations.

1. Checks to see if there are any active Java threads and stops the VM if there are 
none.

2. Checks to see if enough time has passed to allow a thread that was waiting for a 
specific time to be restarted. If there is such a thread, it is automatically 
restarted.

3. Checks to see if any I/O events have occurred and where appropriate it allows 
the relevant threads to contend for CPU time

4. Attempts to switch to another thread.

For performance reasons, the operations above are implemented as macros that are, 
by default, defined in VmCommon/h/events.h. It is here that device-specific event 
handling code can be placed. By default, the isTimeToReschedule macro 
decrements a global counter and tests for it being zero. When it is zero the second 
macro is executed. The idea here is for the reschedule to be executed only once 
for a fairly large number of bytecode executions. As the name implies, 
reschedule is where the thread context switching is done, if necessary.

The second layer in event handling implementation is the function

GetAndStoreNextKVMEvent(bool_t forever, ulong64 waitUntil)

If a new event is available from the host operating system, this function must call a 
special function called StoreKVMEvent to make the details of the event available 
to the KVM. If no new events are available from the host operating system, then the 
function can simply return.

The arguments to the GetAndStoreNextKVMEvent function are as follows:

■ If the forever argument is TRUE, this function should wait for as long as 
necessary for an event to occur (used for battery conservation as described 
below.)

■ If the forever argument is FALSE, this function should wait until at most 
waitUntil for an event to occur.

Some battery conservation features were included in the reference implementation 
of these functions. This is to pass to the event checking function the “forever” flag 
or the maximum wait time. If there are no pending events, the native 
implementation of the GetAndStoreNextKVMEvent function can then put the 
device “to sleep” until the next event occurs. Battery conservation issues are 
discussed in more detail in the next subsection.
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12.4 Battery power conservation
Most KVM target devices are battery-operated, and the manufacturers of these 
devices are typically extremely concerned of excessive battery power consumption. 
To minimize battery usage, KVM is designed to stop the KVM interpreter loop 
from running whenever there are no active Java threads in the virtual machine and 
when the virtual machine is waiting for external events to occur. This requires 
support from the underlying operating system, however.

In order to take advantage of the power conservation features, you must port the 
following low-level event reading function

GetAndStoreNextKVMEvent(bool_t forever, ulong64 waitUntil)

so that it calls the host system specific sleep/hibernation features when the virtual 
machine calls this function with the forever argument set TRUE. The KVM has 
been designed to automatically call this function with the forever argument set 
TRUE if the virtual machine has nothing else to do at the time.

This allows the native implementation of the event reading function to call the 
appropriate device-specific sleep/hibernation features until the next native event 
occurs.

Additionally, the macro SLEEP_UNTIL(wakeupTime) should be defined in such a 
fashion that the target device goes to sleep until wakeupTime milliseconds has 
passed.
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CHAPTER 13

Class File Verification

13.1 Overview
The class file verifier supported by Java 2 Standard Edition (J2SE) is not suitable for 
small, resource-constrained devices. The J2SE verifier requires a minimum of 50 kB 
binary code space, and at least 30-100 kB of dynamic RAM at run time. In addition, 
the CPU power needed to perform the iterative dataflow algorithm in the standard 
JDK verifier can be substantial.

We have designed and implemented a new, two-phase class file verifier that is 
significantly smaller than the existing J2SE verifier. The runtime part of the new 
verifier requires about 15 kB of Intel x86 binary code and only a few hundred bytes 
of dynamic RAM at run time for typical class files. The runtime verifier performs a 
linear scan of the byte code, without the need of a costly iterative dataflow 
algorithm. The new verifier is especially suitable for KVM, a small-footprint Java 
virtual machine for resource-constrained devices.

The new class file verifier operates in two phases, as illustrated in Figure 1:

■ First, Java class files have to be run through a special preverifier tool in order to 
augment the class files with additional attributes to speed up runtime 
verification. The preverification phase is typically performed on a development 
workstation, where the application developer writes and compiles the 
applications.

■ At runtime, the runtime verifier component in the KVM utilizes the additional 
attributes generated by the preverifier to perform the actual class file verification 
efficiently.
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FIGURE 1 Two-phase verification

The runtime class file verifier requires all the subroutines to be inlined, so that class 
files contain no jsr, jsr_w, ret, or wide ret instructions. Additionally, the 
runtime verifier requires the methods in class files to contain special StackMap 
attributes. The preverifier tool performs these modifications to normal class files 
generated by a Java compiler such as javac. A transformed class file is still a valid 
J2SE class file, but with additional attributes that allow verification to be carried 
out efficiently at run time.

Note – In the future, javac (the Java compiler) may be modified to perform these 
changes automatically. In that case, the preverifier tool will no longer be necessary.

The preverifier tool shipped with the KVM release is a C program that contains 
code extracted from the JDK 1.1.8 virtual machine implementation as well as code 
specifically written for inlining subroutines and inserting the StackMap attributes. 
The program compiles and runs on Windows and Solaris, and can be ported to 
other development platforms relatively easily.

13.2 Using the preverifier 
The preverification phase is usually performed at application development time on 
a development workstation. For example, if you weren’t using a preverifier, you 
would typically compile Foo.java using javac like this:

javac -classpath kvm/classes Foo.java

Development workstation

MyApp.java

preverifier

MyApp.class

javac

MyApp.class

verifier

interpreter

…download... Target device
(JVM runtime)
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However, when using the preverifier, you would place the output of javac in a 
separate directory and then transform the resulting class files using the preverifier. 
For example:

javac -classpath kvm/classes -d mydir Foo.java
preverify -classpath kvm/classes -d . mydir

The above preverifier command transforms all class files under mydir/ and places 
the transformed class files in the current directory (as specified by the -d option).

Makefiles in the KVM distribution invoke the preverifier automatically.

13.2.1 General form
More generally, the preverifier is invoked as follows:

preverify <options> <input files>

Preverifier options and accepted input file formats are explained in more detail 
below.

13.2.2 Preverifier options
The preverifier accepts a number of arguments and options.

-classpath <directories> | <JAR files>

■ Directories or JAR file(s) in which the KVM/CLDC Java library classes are 
located. The directory separator is platform-specific. On Solaris a colon is used. 
On Win32 a semicolon is used. The JAR file specified must be in a valid Java 
Archive format and must end with either .jar, .JAR, .zip or .ZIP suffix.

-d <directory>

■ The directory in which output classes will be written. The default output 
directory is ./output.

-cldc1.0

■ This option checks for the existence of language features prohibited by CLDC 
1.0 (native methods, floating point, and finalizers).

-nofinalize

■ This option checks for the use of finalizers in application classes. When this 
option is specified, an error is reported if finalizers are detected in any of the 
input files.

-nonative

■ This option checks for the use of native methods in application classes. When 
this option is specified, an error is reported if native methods are detected in any 
of the input files.
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-nofp

■ This option checks for the use of floating point operations in application classes. 
When this option is specified, an error is reported if floating point operations are 
detected in any of the input files.

@<filename>

■ The name of a text file from which command line arguments will be read. 

Note – When the command line arguments are read from a file, parameters must 
all be specified on a single line and the parameters to the -classpath and -d 
options must be enclosed within double quotes. When the corresponding options 
are used from the command line, quotes are not required (unless the directory/file 
name parameter contains spaces.) 

For example, the contents of <filename> under Win32 may appear as follows:

-classpath “api/classes; aaa bbb ccc/samples/classes” -d “output” 
-verbose HelloWorld1 HelloWorld2 HelloWorld3

13.2.3 Supported input file formats
The preverifier can accept input files in three different formats:

■ individual Java class files
■ directories containing Java class files
■ JAR files containing Java class files.

To preverify a single class file or a number of class files, simply include the class 
file(s) after the command line options: 

preverify -classpath kvm/classes File1 File2 ...

To preverify all the Java class files contained in a directory or set of directories, 
invoke the preverifier tool as follows:

preverify -classpath kvm/classes dir1 dir2 ...

To preverify all the Java class files contained in one or more JAR files, invoke the 
preverifier tool as follows:

preverify -classpath kvm/classes Jar1.jar Jar2.jar ...

Any combination of individual class files, directories or JAR files should be 
possible. 

Obviously, the library classes can also be contained in a JAR/ZIP file, as illustrated 
by the line below:
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preverify -classpath classes.zip File1 File2 ...

Output is generated differently depending on input parameters. If individual files 
are specified, the preverifier tool performs preverification separately for each input 
file. For each directory name, the preverifier recursively transforms every class file 
under that directory. The JAR file handling is discussed in the next section.

Note – A non-zero error status is returned if preverification fails for any reason.

13.2.4 JAR support in preverifier (since KVM 1.0.2)
Since KVM 1.0.2, the preverifier tool provided with the KVM allows input files to 
be provided as a JAR file. Given a JAR file that contains un-preverified Java class 
files, the preverifier tool will automatically generate an identical JAR file 
containing preverified class files.

This is performed as follows: First, the preverifier will check the file extension 
(.jar, .JAR, .zip or .ZIP file suffixes are acceptable) and validate that the file is 
in valid Java Archive format. Then, the class files will be extracted from the JAR 
file. For each class name extracted from the JAR file, the preverifier tool will 
perform the necessary transformations, and will then store the output file into a 
temporary directory tmpdir. After all the class files have been transformed 
successfully, a new JAR file with the same name will be created under <output> 
directory containing all the verified classes previously stored in tmpdir.

If the preverifier is run in non-verbose mode, any errors that may have occurred 
during the JAR creation will be logged in the <output>/jarlog.txt file, where 
<output> refers to the directory in which output classes will be written. If no 
errors occur during JAR creation, the <output>/jarlog.txt file will be 
removed. Directory tmpdir is also removed after the JAR file creation.

Note – When preverifying class files contained in JAR files, the preverifier tool will 
internally call the standard JAR tool to repackage the output files into a new JAR 
file. To accomplish this, the standard JAR tool must be accessible on your file path.

13.3 Porting the verifier
Runtime part. The runtime part of the verifier does not generally require any 
porting efforts, as it is closely integrated with the rest of the KVM, and is 
implemented in portable C code.

The process of porting the runtime verifier from KVM to another virtual machine is 
beyond the scope of this document.
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Preverifier part. The preverifier is also written in C. By default, the preverifier is 
available for Windows and Solaris, but it should be relatively easy to compile it to 
run on other operating systems as well. Note that the preverifier codebase is 
derived from the “Classic” Java virtual machine, so the preverifier implementation 
looks quite different from the rest of the KVM codebase.

13.3.1 Compiling the preverifier
The sources for the preverifier are in the directory tools/preverifier/src. 

On Solaris, you can build the preverifier by typing the “gnumake” command in the 
tools/preverifier/build/solaris directory. This compiles and links all .c 
files in the tools/preverifier/src directory, and places the resulting 
executable file in the tools/preverifier/build/solaris directory.

On Win32, you can build the preverifier by typing the “gnumake” command in the 
the tools/preverifier/build/win32 directory. This compiles and links all .c 
files in the tools/preverifier/src subdirectory, and places the resulting 
executable file in the tools/preverifier/build/win32 directory.
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CHAPTER 14

JavaCodeCompact (JCC)

KVM supports the JavaCodeCompact (JCC) utility (also known as the class prelinker, 
preloader or ROMizer). This utility allows Java classes to be linked directly in the 
virtual machine, reducing VM startup time considerably.

At the implementation level, the JavaCodeCompact utility combines Java class files 
and produces a C file that can be compiled and linked with the Java virtual 
machine.

In conventional class loading, you use javac to compile Java source files into Java 
class files. These class files are loaded into a Java system, either individually, or as 
part of a jar archive file. Upon demand, the class loading mechanism resolves 
references to other class definitions.

JavaCodeCompact provides an alternative means of program linking and symbol 
resolution, one that provides a less-flexible model of program building, but which 
helps reduce the VM’s bandwidth and memory requirements.

JavaCodeCompact can:

■ combine multiple input files
■ determine an object instance’s layout and size
■ load only designated class members, discarding others.

14.1 JavaCodeCompact options
JavaCodeCompact accepts a large number of arguments and options. Only the 
options currently supported by KVM are given below.

■ filename

Designates the name of a file to be used as input, the contents of which should 
be included in the output. File names with a .class suffix are read as single-
class files.

File names with .jar or .zip suffixes are read as Zip files. Class files contained 
as elements of these files are read. Other elements are silently ignored.
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■ -o output filename

Designates the name of the output file to be produced. In the absence of this 
option, a file is produced with the name ROMjava.c.

■ -nq

Prevents JavaCodeCompact from converting the byte codes into their 
“quickened” form. This option is currently required by KVM.

■ -classpath path

Specifies the path JavaCodeCompact uses to look up classes. Directories and zip 
files are separated by the delimiting character defined by the Java constant 
java.io.File.pathSeparatorChar. This character is usually a colon on the 
Unix platform, and a semicolon on the Windows platform.

Multiple classpath options are cumulative, and are searched left-to-right. This 
option is used in conjunction with the -c cumulative-linking option, and with 
the -memberlist selective-linking option.

■ -memberlist filename

Performs selective loading as directed by the indicated file. This file is an ASCII 
file, as produced by JavaFilter, containing the names of classes and class 
members.

■ -v

Turns up the verbosity of the linking process. This option is cumulative. 
Currently up to three levels of verbosity are understood. This option is only of 
interest as a debugging aid.

■ -arch Architecture

Specify the architecture for which you are generating a romized image. At this 
time, you must specify KVM as the architecture.

14.2 Porting JavaCodeCompact
With one exception, JavaCodeCompact outputs C code that is completely platform-
independent.

To initialize a variable that is final static long or final static double, 
JavaCodeCompact performs the appropriate initialization using the two macros:

ROM_STATIC_LONG(high-32-bits, low-32-bits)
ROM_STATIC_DOUBLE(high-32-bits, low-32-bits)

If you have initialized either the compiler BIG_ENDIAN or LITTLE_ENDIAN to a 
non-zero value, the file src/VmCommon/h/rom.h generates default values for 
these macros. 
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If you have not defined BIG_ENDIAN or LITTLE_ENDIAN, or if for some reason the 
macros defined in rom.h are inappropriate for your platform, you should create 
appropriate definitions for ROM_STATIC_LONG and/or ROM_STATIC_DOUBLE in a 
platform-dependent location.

There are no other known platform or port dependencies.

14.3 Compiling JavaCodeCompact
The sources for JavaCodeCompact are in the directory tools/jcc/src. 

On Unix and Windows machines, you compile JavaCodeCompact by typing the 
command “gnumake” in the tools/jcc/ directory. This compiles all .java files 
in the tools/jcc/src subdirectory, and places the resulting compiled file in the 
tools/jcc/classes directory.

You may need to make modifications to the Makefile in the tools/jcc/ 
directory to indicate the location of your javac compiler.

14.4 JavaCodeCompact files
The directory tools/jcc contains a Makefile that shows all the steps necessary 
to execute JavaCodeCompact. This Makefile currently has two targets:

unix
windows

each of which can be used to create all the files necessary for that platform.

On the unix and windows platforms, two files are created:

ROMjavaPlatform.c
nativeFunctionTablePlatform.c

The first file contains the C data structures that correspond to the classes in the zip 
file. The second file contains tables necessary for using native functions (see §11.3). 
This second file should be compiled and linked into KVM whether or not you are 
planning to use the other features of the JavaCodeCompact utility.
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14.5 Executing JavaCodeCompact
The JavaCodeCompact utility is used to built the platform-specific file 
nativeFunctionTablePlatform.c, which contains tables necessary for calling 
native methods. 

This file must be built even if you are not using the ability of JavaCodeCompact to 
pre-load classes for you. If you are not ROMizing your system classes (in other 
words, you are loading all system classes dynamically), you may skip Step 4 below.

The simplest method for using the JavaCodeCompact utility is to either use the 
Makefile provided or to modify it for your platform. The following lists the steps 
that the Makefile performs:

1. Compile all the .java files in the api/src directory. The resulting class files are 
verified and merged into a single zip file classes.zip. This zip file is copied 
to the tools/jcc directory.

2. Compile the sources for JCC as described in §14.3 above.

3. Copy classes.zip to classesPlatform.zip. Remove from this platform-
dependent zip file any classes or packages that should not be used on your 
platform.

4. Execute your system’s equivalent of the following command in the jcc 
directory:

env CLASSPATH=classes \
JavaCodeCompact -nq -arch KVM \
-o ROMjavaPlatform.c classesPlatform.zip

The “env CLASSPATH-classes” sets an environment variable indicating that 
the code for executing JavaCodeCompact can be found in the subdirectory 
called classes. Next on the command line is the name of the class whose main 
method is to be executed (JavaCodeCompact), and the arguments to that 
method.

5. Execute your system’s equivalent of the following command in the jcc 
directory:

env CLASSPATH=classes \
JavaCodeCompact -nq -arch KVM_Native 
-o nativeFunctionTablePlatform.c classesPlatform.zip

This command creates the file containing the native function tables necessary to 
link native methods to the corresponding C code.
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6. Recompile all the sources for KVM. You must ensure that the preprocessor 
macro ROMIZING is set to a non-zero integer value. You must also ensure that 
the file ROMjavaPlatform.c is included as one of your source files.

The resulting kvm image will include, pre-loaded, all of the class files that were in 
the original classesPlatform.zip file. 

14.6 Limitations
The current implementation of JavaCodeCompact requires that the class files that 
you compact constitute a “transitive closure.” If class A is compacted, and class A’s 
constant pool references class B, then class B must also be included as part of the 
compaction.

Class A includes Class B in its constant pool if any of the following conditions are 
true:

■ Class A is a direct subclass of class B, or class A directly implements class B.

■ Class A creates an instance of class B, or an array of class B.

■ Class A calls a method that is defined in class B.

■ Class A checks to see if an object is an instance of type B, or casts an object to 
type B.

Note that the following do not cause class B to be included in class A’s constant 
pool. Under certain circumstances, it may be possible to compact A without also 
compacting B.

■ Class A has an instance variable of type B

■ Class A has a method whose argument or return type includes type B in its 
signature.

■ Class A creates an instance of class B using the Class.forName() method.

JavaCodeCompact will fail and give you an error message if you fail to include a 
class file that it requires.
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CHAPTER 15

Java Application Manager (JAM)

A central requirement for KVM in most target devices is to be able to execute 
applications that have been downloaded dynamically from the network. Once 
downloaded, the user commonly wants to use the applications several times before 
deleting them. The process of downloading, installing, inspecting, launching and 
uninstalling of Java applications is referred to generally as application management. 
In typical desktop computing environments, these tasks can be performed by 
utilizing the facilities of the host operating system. However, the situation is very 
different in many small, resource-constrained devices which often lack even basic 
facilities such as a built-in file system.

To facilitate the porting of KVM to small, resource-constrained platforms, KVM 
implementation contains an optional component called Java Application Manager 
(JAM) that can be used as a starting point for machine-specific implementations.

Note – The JAM that is provided as part of the CLDC Reference Implementation is 
used primarily for compatibility testing purposes. This JAM implementation is not 
compatible with the requirements of J2ME profiles such as MIDP. To implement a 
MIDP-compliant Java Application Manager, refer to the MIDP Reference 
Implementation.

At the compilation level, JAM can be turned on or off by using the flag

#define USE_JAM 1

When building the KVM using gnumake, the following command automatically 
builds the system with the JAM enabled:

gnumake USE_JAM=true

This section provides a brief overview of the JAM reference implementation 
provided with KVM. The description below assumes that the target device has 
some kind of a “microbrowser” that can be used for initiating the downloading of 
applications. This microbrowser is commonly provided as part of the native 
computing environment, but it can also be part of the JAM in some 
implementations.
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15.1 Using the JAM to install applications
Java Application Manager is a native C application that is responsible for 
downloading, installing, inspecting, launching, and uninstalling Java applications.

From the user’s viewpoint, the JAM is typically used as follows:

1. The user sees an application advertised on a content provider’s web page.

2. The user selects the tag to install it.

3. The Java application is downloaded and installed.

4. The user runs it.

Here’s a more detailed description:

1. While browsing a content provider web page using a native microbrowser, the 
user sees a description of the Java application in the text of the page, and a 
highlighted tag (or button) that asks them if they want to install the application. 
The tag contains a reference to an application Descriptor File. The Descriptor File, 
typically with a .jam file extension, is a text file consisting of name/value pairs. 
The purpose of this file is to allow the JAM to decide, before it tries to download 
it, whether the Java application the user selected can be installed successfully on 
the device. This saves the user the cost of moving the Java application to the 
device if it cannot be installed. The Descriptor File is small (several hundred 
bytes), while a typical Java application is from 10 to 20 kilobytes, so it is much 
cheaper to download the Descriptor File rather than the entire Java application.

2. The user selects the tag to start the installation process. The browser retrieves 
the Descriptor File from the web site.

3. The browser transfers program control to the JAM, passing it the content of the 
Descriptor File and the URL for the page it was browsing.

4. The JAM checks to see if the application is already installed on the device, and 
checks its version number (see later discussion on the details of application 
updating.) It then reads the JAR-File-Size tag of the Java application to 
ensure that there is sufficient space on the device to save it.

5. If there is sufficient space to install the application, the JAM uses the JAR-
File-URL tag in the descriptor file to get the URL of the JAR file (it may use the 
base URL to the Descriptor File, if the JAR-File-URL tag is a relative URL) and 
start the download process using HTTP. The JAM then stores the JAR file on the 
device. 

If the download process is interrupted, the JAM discards the partially 
downloaded application, as if the application was never downloaded before.
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6. The JAM adds the application to the list of installed Java applications, and 
registers it with any other native tools as required. The JAM saves the following 
information along with the JAR file:

■ name of JAR file,
■ absolute URL from which the JAR file was downloaded,
■ main class of the java application,
■ name of the application,
■ version number of the application.

The absolute URL and the version number are used to uniquely identify an 
application during application update (see next subsection.)

In the reference implementation of the JAM, the user is shown the list of 
installed Java applications on the device, with the recently installed application 
selected for execution. 

However, if the Use-Once tag is set to yes, JAM does not add the application to 
the list, and it launches the application immediately. 

7. Any errors encountered during the process must be handled by the JAM. A help 
page URL for the content provider is included in the Descriptor File. The JAM can 
then direct the user to this URL using the native browser. 

15.1.1 Application launching
Here’s a typical use case for launching a Java application:

1. The user is shown a list of Java applications (the user interface design is left up 
to the manufacturer.)

2. The user selects the Java application that is to be launched (the user interface 
design and selection mechanism is left up to the manufacturer).

3. The JAM launches the KVM with a parameter containing the main class of the 
application. The KVM initializes the main class and starts executing it. As 
additional classes are required for the execution of the application, the KVM 
uses a manufacturer-defined API to unpack and load the class files from the 
stored JAR file.

4. The Java application is displayed on the screen to the user.

5. When the application exits, and if the Use-Once tag in the Descriptor File is set 
to YES, the JAM removes the JAR file.

15.1.2 Application updating
When the content provider updates an application (for example, to fix bugs or add 
new features), the content provider should do the following:
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1. Assign a new version number to the application.

2. Change the Descriptor File of the application to use the new version number.

3. Post the updated JAR file on the content provider's web site, using the same 
JAR-File-URL tag as the previous version of the application.

When the user requests the installation of an application, the JAM checks if the 
application's JAR-File-URL is the same as one of the installed applications. If so, 
and the Application-Version of the requested version is newer than the installed 
version, the JAM prompts for user approval before downloading and installing the 
newer version of the application.

The reference implementation uses a string to specify the version number in the 
following format:

Major.Minor[.Micro] (X.X[.X]), where the .Micro portion is optional (it 
defaults to “0”). In addition, each portion of the version number is allowed to a 
maximum of 2 decimal digits (that is, the range is from 0 to 99.)

For example, “1.0.0” can be used to specify the first version of an application. For 
each portion of the version number, leading zeros are not significant. For example, 
“08” is equivalent to “8”. Also, “1.0” is equivalent to “1.0.0”. However, “1.1” is 
equivalent to “1.1.0”, and not “1.0.1”.

In the reference implementation, missing Application-Version tag is assumed to be 
“0.0.0”, which means that any non-zero version number is considered as a newer 
version of the application.

The JAM must ensure that if the application update fails for any reason, the older 
version is left intact on the device. When the update is successful, the older version 
of the application is removed. 

15.2 JAM components

15.2.1 Security requirements
The JAM, its data, and associated libraries, should be stored securely on the device. 
The device manufacturer must ensure that these components cannot be modified 
by Java applications or other downloadable content.



Chapter 15 Java Application Manager (JAM) 99

15.2.2 JAR file
JAR files are a standard feature of Java technology designed to hold class files and 
application resource data in a compressed format. JAM-compliant JAR files hold 
exactly one Java application and its associated resources. Compressed JAR files 
reduce the size of the application by approximately 40% to 50%. This both reduces 
the storage requirements on the device and reduces the download time for the 
application. Items in the JAR file are unpacked as required by the JAM.

15.2.3 Application Descriptor File
The Application Descriptor File is a readable text file. It consists of name-value 
pairs that describe the important aspects of its associated Java application. It is 
referenced from a tag on a content provider's web page. It is created and 
maintained by the Java application developer and stored along with its application 
JAR file on the same web site. Developers may create this file with any text editor.

The Descriptor File has the following entries (tag names are case sensitive):

Application-Name

Displayable text, limited to width of screen on the device 

Application-Version

Major.Minor[.Micro] (X.X[.X], where X is a 1 or 2 digit decimal number, 
and the .Micro part is optional) 

KVM-Version

Comma separated list of KVM version strings as defined in the CLDC 
microedition.configuration system property (see CLDC Specification). 
“CLDC-1.0” is an example of the KVM version string. The items in the list are 
matched against the KVM version string on the device, and an exact match is 
required to execute this application. Any item matching the KVM version string 
on the device satisfies this condition. For example, “CLDC-1.0, CLDC-1.0.3” runs 
on either version of KVM on the device.

Main-Class

Text name of the application's Main class in standard Java format.

JAR-File-Size

Integer in bytes
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JAR-File-URL

Standard URL text format to specify the source URL. If this is a relative URL, 
then the URL to the Descriptor File is the base URL. 

Use-Once

yes/no 

Help-Page-URL

Standard URL text format, used by the browser to access help pages

Additional requirements and restrictions:

■ The MIME type for the Descriptor File is application/x-jam and the 
extension is .jam.

■ All URLs must point to the same server from which the web page was loaded.
■ The JAM must store the Descriptor File contents, in a manufacturer-specific 

format for possible later use.

The application developer may add any application specific name-value pairs to 
the Descriptor File. This allows the application to be configured at deployment by 
changing the values in the Descriptor File. So, different Descriptor Files could use 
the same application JAR file, with different application parameters.

The format of the tag is a string, but it is recommended that it follow a similar style 
as the tags defined in the above table. The format of the value is an application 
specific string. 

A simple proposed API to retrieve the value via the JAM could be:

public String GetApplicationParameter(String name)

15.2.4 Network communication
Whenever a Java application tries to make an HTTP connection, the networking 
implementation should check with the JAM to find the name of the server where 
the application was downloaded. This ensures that the connection is made to the 
same server the application came from. A string comparison is made between the 
host name in both the URLs. 

15.3 Application lifecycle management
The lifecycle of a Java application is defined to be the following:
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■ The KVM task is launched and instructed to execute the main class of the Java 
application (as described by the Main-Class entry of the Descriptor File.)

■ The Java application executes inside the context of the KVM task and responds 
to user events.

■ The KVM task exits, either voluntarily, or involuntarily, and terminates the Java 
application.

The term task is used loosely to describe the KVM as a logically distinct execution 
unit. In actual devices, the KVM task can be implemented as a task, a process or a 
thread of the underlying operating system.

The API functions for controlling the lifecycle of the KVM are not specified, as the 
mechanism is vastly different from platform to platform. Instead, it is required that 
all JAM implementations support the following features:

■ The JAM implementation must be able to launch the KVM task and start 
executing the main class of the Java application.

■ The JAM implementation must be able to forcibly terminate the KVM task, and 
optionally be able to suspend and resume the KVM task.

■ The suspension, resumption, and termination of the KVM must be performed by 
the procedures described below.

15.3.1 Termination of the KVM Task
The KVM task can be terminated in two ways: voluntarily or involuntarily.

The application can voluntarily terminate itself by calling the Java method 
System.exit. Under certain conditions, the JAM may decide to force the KVM to 
terminate. The exact method of triggering forced termination is platform 
dependent. For example, the JAM may spawn a watchdog thread that wakes up 
after a certain period. If the watchdog thread detects that the KVM has not 
terminated voluntarily, it forces the KVM to terminate.

During forced termination, the JAM actively frees all resources allocated by the 
KVM and terminates the KVM task. The exact procedure is platform dependent. 
On some platforms, calling exit or kill may be enough. On other platforms, 
more elaborate clean-up may be required.

15.4 Error handling
The JAM is responsible for handling all errors encountered in installing and 
launching Java applications. The method of handling errors differs from 
implementation to implementation, but the JAM should be able to interact with the 
user to resolve the error if possible. To assist in this, the Descriptor File has a tag 
called Help-Page-URL that is set by the content provider. The JAM may decide 
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that under certain conditions, the browser should be invoked and the user sent to 
the help page. The help page could have information that would allow the user to 
contact the content provider for additional assistance. 

15.4.1 Error conditions
The following are a set of possible error conditions and sample messages that can 
be displayed to describe the error to the user. Manufacturers should design the 
messages so that they are appropriate to their device user interface.

■ The user tries to install an application whose size is larger than the total storage 
space available on the device:

“NAMEOFAPP” is too large to run on this device and cannot be installed.

■ The user tries to install an application, whose size is larger than the free storage 
space (but smaller than the total storage space) on the device:

There is not enough room to install. Try removing an application and trying 
again.

■ The user tries to install an application that is already installed on the device.

“NAMEOFAPP” is already installed. (Soft buttons should be labeled OK and 
Launch. Launch would run the existing application on the device.)

■ The user tries to install an application that is not designed for the particular 
device they own.

“NAMEOFAPP” won't work on this device. Choose another application. (Soft 
button label = Back, Done.)

■ The user tries to install an application and the tags describing the Java 
application have a syntax error or an invalid format that results in installation 
failure.

The installation failed. Contact your ISP for help.

■ The user tries to install an application, the URL to the application is incorrect or 
inaccessible, and the application cannot be installed.

The URL for “NAMEOFAPP” is invalid. Contact your ISP for help.

■ The user tries to install an application, the application is not the same size as 
described in the Descriptor File. The application should be discarded.

“NAMEOFAPP” does not match its description and may be invalid. Contact 
your ISP for help.

■ The user is installing an application. During application download, the 
connection drops, and the application is not loaded onto the device successfully.

The connection dropped and the installation did not complete. Please try 
installing again. [Soft button label = Install, Back]
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■ The user is installing an application, and the URL specified matches exactly with 
the one located already on the device. 

The JAM should check the version # of both versions and present a decision 
to the user.

■ The user tries to run an application and for some reason the application cannot 
launch (for example, the JAM failed to create a new OS task to run the KVM).

Cannot launch “NAMEOFAPP”. Contact your ISP for help.

■ The user has been running an application. The application tries to save to the 
scratchpad and fails.

Cannot save data. Contact your ISP for help.

■ The user is running an application and it crashes or hangs during execution. 
NOTE: This is a generic error.

“NAMEOFAPP” has unexpectedly quit.
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CHAPTER 16

Java-Level Debugging Support 
(KDWP)

KVM provides facilities for plugging the virtual machine into third-party Java 
development and debugging environments that are compliant with the JPDA (Java 
Platform Debug Architecture) specification supported by Java 2 Standard Edition. 
Further information on the JPDA architecture is available at 
http://java.sun.com/products/jpda/.

Due to strict memory constraints, KVM does not implement support for the JVMDI 
(Java Virtual Machine Debug Interface) and full JDWP (Java Debug Wire Protocol) 
specifications required by JPDA.

Instead, KVM implements a subset of the JDWP known as KDWP (KVM Debug Wire 
Protocol). A specification of the KDWP protocol is available in a separate document 
listed in Section 1.2 “Related documentation.”

16.1 Overall architecture
The KDWP was designed to be a strict subset of the JDWP, primarily based on the 
resource constraints imposed on the KVM. In order to make KVM run with a 
JPDA-compatible debugger IDEs, a debug agent (debug proxy) program is 
interposed between the KVM and the JPDA-compatible debugger. The debug agent 
allows many of the memory-consuming components of a JPDA-compliant 
debugging environment to be located on the development workstation instead of 
the KVM, therefore reducing the memory overhead that the debugging interfaces 
have on the KVM and target devices. As obvious, the debugging interfaces can be 
turned off completely (at compile time) on those platforms and ports that do not 
need Java-level debugging support.

At the high level, the Java-level debugging support implementation consists of two 
parts:

■ the actual code in the KVM to support a subset of the JDWP, and

http://java.sun.com/products/jpda/
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■ the debug agent that performs some of the debug commands on behalf of the 
KVM.

The overall architecture for the Java-level debugging interface is illustrated in 
Figure 2. In that figure, the topmost box represents the JPDA-compliant debugging 
environment (“JPDA Debugger”) running on a development workstation. The 
debugger is connected to the debug agent that talks to the KVM.

FIGURE 2 Java-level debugging interface architecture

The debug agent connects to the KVM via a socket connection. Similarly, the 
debugger connects to the debug agent over a socket. The debugger is unaware that 
it is connected to the debug agent. The debugger appears to be communicating 
directly with a JDWP-compliant Java Virtual Machine. In fact, the debug agent can 
be configured in pass through mode so that all packets are passed from input to 
output using the debug agent with a standard Java VM. In normal KVM debug 
mode, the debug agent examines packets from the debugger and determines which 
packets are to be handled by the KVM and which are to be handled within the 
debug agent.

The main processing done in the debug agent is the parsing of class files to extract 
debugging information. This includes line number and code offset information and 
variable information. The KDWP implementation within the KVM includes some 
vendor specific commands that the debug agent uses to communicate with the KVM.

JPDA Debugger

Debug Agent

KVM

Socket connection

Socket connection
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16.2 Debug Agent
The debug agent (also known as debug proxy) is written in the Java programming 
language and the code is in the KVM source tree under the directory tools/kdp/
src/kdp. There are two main portions of the code: the portion that handles 
connections to the debugger and to KVM, and the portion that handles the parsing 
of the class files. The latter code is located in subdirectory classparser.

16.2.1 Connections between a debugger and the KVM
The portion of the code that handles connections to the debugger and to KVM 
resides in file KVMDebugProxy.java. This code creates two objects: 
DebuggerListener and KVMListener. The DebuggerListener class handles 
the retrieval of packets from the debugger, and the KVMListener class handles the 
retrieval of packets from the KVM. DebuggerListener and KVMListener are 
both subclasses of class Thread. Therefore, when they are invoked they start a new 
thread of execution (on the development workstation.) Each object also gets passed 
a handle to the other object (that is, the KVMListener object gets passed a handle 
to the DebuggerListener object, and vice versa). This enables cross-
communication of packets between the debugger and the KVM. The following 
diagram (Figure 3) may help to clarify this further:

FIGURE 3 Debugger and KVM connections

In a typical scenario, the KVM is started with the -debugger flag, which puts it 
into a debugger enabled mode. In this mode the KVM listens on a socket for a 
connection from the debug agent. When the debug agent is started, it connects to 
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this socket, and then listens on another socket for a connection from the debugger. 
When the debugger connects, it issues the JDWP handshake command, which 
consists of the string “JDWP-Handshake”. The debug agent acknowledges by 
reflecting this string back to the debugger. Meanwhile, the debug agent has sent the 
handshake command to the KVM and the KVM has responded back with 
information concerning which optional events it supports. The KVMListener then 
queries the KVM for a list of all the classes that are currently loaded into the VM. 
This information is used to build a hash table of ClassFile objects that is used 
later when the debugger requests information about a specific class (such as line 
number information, method information, and so forth.) At this point, each thread 
is listening for packets. The KVM sends a VMInit event to the debugger via the 
debug agent, which indicates to the debugger that the KVM is starting its execution 
of the Java application. The debugger might also send packets that indicate to the 
KVM to start up other events such as ClassPrepare or ClassLoad.

The communication code for the debug agent is in source file 
SocketConnection.java. In this file, each object (KVMListener and 
DebuggerListener) creates a thread of execution that waits for packets to arrive 
from its respective socket. If the packet is a command packet (the Packet.Reply 
bit is not set), then it puts that packet on a packetQueue list (see file 
ProxyListener.java) and a notification is sent to any object waiting on that 
queue. The packet is then extracted from the queue by whatever listener is waiting 
for that packet on that queue. In the run method for the KVMListener and 
DebuggerListener, each packet is analyzed to determine if the debug agent 
needs to process the packet or whether it is to be transmitted to the other object for 
further processing.

16.2.2 Packet processing
The DebuggerListener object intercepts a number of packets as is evident by 
examining the code for the large switch statement located after the call to 
waitForPacket. When waitForPacket returns with a packet, the debug agent 
first creates a new PacketStream object, then checks to see if the debug agent 
needs to process that packet (For example, the SENDVERSION_CMD packet is 
processed by the debug agent directly, and a response is created and sent back to 
the debugger without any interaction with the KVM.) A more complex command 
would be the FIELDS_CMD of the REFERENCE_TYPE_CMDSET. For this command, 
the debugger has passed in a class id, which is used by the debug agent to find a 
ClassFile object via the ClassManager.classMap object. The classMap object 
is filled by the KVMListener object when it receives the ClassPrepare events 
from the KVM. Once the debug agent has obtained the ClassFile object, it uses 
the getAllFieldInfo method to obtain a list of fields, and iterates through this 
list passing the information back to the debugger. Once again, there is no 
interaction with the KVM.

Similarly, within the source file for the KVMListener.java, the KVMListener 
object intercepts the CLASS_PREPARE events (events whose type is equal to the 
constant JDWP_EventKind_CLASS_PREPARE) that are passed up from the KVM. 
KVMListener creates a new ClassFile object via the call to 
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manager.findClass and inserts it into the ClassManager.classMap hashtable. 
KVMListener then passes the event to the debugger so that it can process the 
event as well.

16.3 Debugger support within KVM
The debugger support within the KVM consists primarily of four source (.c) files 
under the VmExtra/src directory and three header (.h) files under VmExtra/h 
directory. All debugger code is included with the conditional compilation flag, 
ENABLE_JAVA_DEBUGGER. If this flag is enabled, and the KVM is rebuilt, then the 
Java debugger support is included within the KVM. If Java debugger support is not 
desired, set this define in main.h to 0.

Note – If your target platform or port does not require Java-level debugging 
support, we recommend turning the debugging code off at compile time (in file 
main.h or in your platform-specific machine_md.h file):

#define ENABLE_JAVA_DEBUGGER 0

This will make the KVM executable much smaller.

The primary file for the Java debugger support within the KVM is the source file 
debugger.c. This file contains all the support needed for the KDWP API. Socket 
communication is handled by the code in file debuggerSocketIO.c. The 
debuggerInputStream.c and debuggerOutputStream.c files contain the code 
for handling the transmission of data being sent to/from the debugger support 
functions in debugger.c. The code in debugger.c file services all the KDWP 
requests that are sent by or through the debug agent. The function 
ProcessDebugCmds handles the parsing of input packets to determine which 
command set and what command within the command set the packet is referring 
to. This function then determines the appropriate function that is to be invoked for 
handling this command. The inputStream handle as well as the outputStream 
handles are passed as parameters, and used for handling the reply back to the 
debug agent. For performance reasons, most commands use a global inputStream 
and outputStream. If these are already in use, another one is allocated from the 
heap.
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16.3.1 Events
Events are essentially commands generated by the KVM. Events are passed up to 
the debug agent, which may in turn pass them up to the debugger. The code for 
handling an event will appear as follows:

#if ENABLE_JAVA_DEBUGGER
{
  CEModPtr cep = GetCEModifier();
  cep->thread = thisThread;
  setEvent_ThreadStart(cep);
  FreeCEModifier(cep);
}
#endif /* ENABLE_JAVA_DEBUGGER */

This creates a new CEModPtr structure that contains state information for this 
particular event. It then invokes a routine in debugger.c, which attempts to send 
the event. A typical event routine in debugger.c first determines if the event 
attempting to be sent has been enabled by a previous Set Event command from the 
debugger (via the checkNOTIFY_WANTED macro.) Then, findSatisfyingEvent 
is invoked to determine if this particular event matches an event request sent down 
from the debugger. The findSatisfyingEvent function also checks the event 
counter as well as any modifiers that the debugger has applied to this event. If the 
event passes, then it is sent on the outputStream. After an event is sent, 
handleSuspendPolicy is invoked to process whatever suspend policy the 
debugger has attached to this event when the debugger had issued the Set Event 
command. Some events such as breakpoints or single stepping will generally have 
a suspend policy of ALL, which means that all threads are suspended and that the 
KVM will essentially spin through the reschedule loop at the top of the interpreter 
loop waiting for a thread to resume. The Resume command will eventually come 
from the debugger when the user issues a Continue command or when the user 
explicitly issues a Resume Thread command.

In certain situations, events need to be deferred. This is because it is not possible to 
send the event to the debug agent and subsequently suspend the KVM threads, 
since the interpreter might be in the midst of executing a byte code. Thus in such 
cases, insertDebugEvent(cep) is called instead of setEvent_XXX(cep), as 
shown in the example above. At the top of the interpreter loop (see VmCommon/
src/execute.c), the events are checked, and if there is a pending event, it is sent 
when it is safe to do so.

16.3.2 Breakpoints
When a Set Event command is received to add a breakpoint, the code for handling 
the breakpoint event determines if the opcode at that particular location is a Fast 
opcode. If so, then the original opcode must be retrieved from the inline cache before 
the breakpoint is added. The original opcode is stored in an EVENTMODIFIER 
structure that is pointed to by the VMEvent structure for this particular event. 
When the Java bytecode interpreter hits the Breakpoint opcode (see 
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bytecodes.c), and if not single stepping, then the handleBreakpoint function is 
invoked. This function restores the original opcode into the thread structure for 
the CurrentThread, at the point where the breakpoint had been entered. It then 
also sends an event to the debugger via the debug agent. Eventually, the user will 
press the Continue button on the debugger, which results in all threads to resume 
execution. The RESCHEDULE macro (see execute.h) includes some code in it for 
determining if this thread was just at a breakpoint, and if so, it will retrieve the 
next bytecode from a known location within the thread structure. The code within 
the interpreter loop will then execute this instruction.

16.3.3 Single stepping
When the debugger issues a SingleStep event request, the code in debugger.c 
must determine which type of step function it is (that is, step by bytecode or step by 
line), whether the step is a Step Into (step into a function), Step Over (step over calls 
to functions; that is, do not single step into another function), or Step Out (go back 
to the function that called this function). Additionally, if it is a step by line, then 
KVM needs to know what the code offset is for the next line number. To obtain this 
information, KVM calls a private API within the debug agent to return the target 
offset and the next line offset. The debug agent returns this information back to the 
KVM, which stores it into a stepInfo structure, which is part of the 
threadQueue structure (see thread.h.) Within the interpreter loop, a flag is 
checked to determine if this particular thread is in single step mode. If so, then the 
handleSingleStep function in debugger.c is invoked to process this single step. 
The handleSingleStep function determines if the instruction pointer has 
reached the target offset or if it has popped up a frame or if it has gone beyond the 
target offset. Depending on the type of stepping being performed, this function will 
determine when to send a SingleStep event to the debugger. In most cases, if the 
user is single stepping line by line, and when the code offset is equal to the target 
offset, it results in a SingleStep event to be sent to the debugger. All threads are 
typically suspended at this point, and as was the case for the breakpoint scenario 
above, the KVM will wait until the debugger resumes the threads via a Continue 
command or a subsequent SingleStep event.
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16.3.4 Suspend and nosuspend options
It is desirable in certain IDE environments such as Borland’s JBuilder to provide an 
option similar to that available in J2SE for starting up the KVM in two different 
debugging modes. Thus, as of KVM 1.0.3, the KVM debugger can be started in the 
following two modes:

kvm -debugger -suspend ...

kvm -debugger -nosuspend ...

In the suspend mode (this is the default), the KVM stops all Java threads upon VM 
startup and waits for further commands from the IDE (development and 
debugging environment) before the debugging session proceeds any further. In the 
nosuspend mode, the Java threads start running immediately when the KVM is 
started.

In the most common cases, the KVM debugger is usually invoked in the suspend 
mode. Unless the application program being debugged requires substantial 
processing or is recursive in nature, it may not make much sense to invoke the 
KVM in the nosuspend mode. This is because it is very likely that a simple 
application program may complete execution long before the debugger IDE is able 
to issue any commands to the KVM.

16.4 Using the Debug Agent and the JPDA 
Debugger
In order to run the debug agent, it is necessary to build the application class or 
classes being debugged to include debug information. It is also necessary to 
transform the application class file(s) using the preverifier. Then, after the KVM is 
invoked on a specified host and port, the debug agent can be started so that it 
listens to KVM requests on the KVM port, and a local port is specified for 
connecting with a JPDA-compatible debugger.

The following section summarizes the steps necessary to start a debug session in 
much more detail.

Note – KVM debugger functionality is integrated into the J2ME Wireless Toolkit 
(WTK). Therefore, if you are using the WTK, the detailed steps in the next section 
are not necessary.

16.4.1 Starting a debug session
To start a debug session, the following five steps are necessary:
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1. Build the application classes to be debugged with the -g option to include debug 
information. Then, place the output in a separate directory for transforming the 
resulting class file. See Chapter 13, “Class File Verification.”

javac -g -classpath <path> -d <directory> <class>

■ -g indicates to include debug information

■ -classpath <path>, where <path> indicates the directory in which the CLDC/KVM 
Java library classes and the application classes for the application being debugged are 
located.

■ -d <directory>, where <directory> indicates the directory in which output classes 
will be written. The default output directory is ./output.

■ <class> is the application class or classes being debugged.

2. Invoke the preverifier for transforming the class file.

preverify -classpath <path> -d . <directory>

This will transform all classes under <directory> and places the transformed class 
files in the current directory (as specified by the -d option).

3. Start the KVM process:

kvm -debugger -classpath <path> -port <KVM port> <class>

■ -debugger indicates to put the KVM in debugger enabled mode

■ -classpath <path>, where <path> specifies the directory in which the CLDC/
KVM Java library classes as well as the application classes for the application 
being debugged are located.

■ -port <KVM port> is the KVM port. The default KVM port is 2800. This must 
match the KVM port specified by the debug agent below.

■ <class> is the application class being debugged.

4. Start the debug agent (debug proxy): 

java -classpath <path> kdp.KVMDebugProxy -l <localport> -p -r 
<KVM host> <KVM port> -cp <KVM_path>

■ -classpath <path>, where <path> specifies the directories in which the debug 
proxy classes are located.

■ -l <localport>, where <localport> is the port that the debugger connects to.

■ -p indicates to use the class parser.

■ -r <KVM host>, where <KVM host> is the remote host name.

■ <KVM port> is the KVM port. As stated earlier, this port must match the KVM 
port specified in step 3 above. 

■ -cp <path>, where <path> is the directory or directories where the CLDC/KVM 
Java library classes as well as the application classes for the application being 
debugged are located.
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5. Connect to the debug agent with the debugger:

You can use any JPDA-compliant debugger such as Forte, JBuilder or jdb. With the 
Forte debugger, go to the Debug->Connect dialog box and insert the host where the 
debug agent is running and the local port number that had been specified using the 
-l <localport> option.

Note – To download the Forte debugger and for further information on Forte, 
please refer to the Sun One Studio website at 
http://wwws.sun.com/software/sundev/jde/index.html. When running 
the Forte debugger, JDK 1.3 or later must be previously installed and be on the 
classpath, since only this version (or later) of the JDK includes support for the 
JPDA. For further information on downloading the JDK 1.3, please refer to the 
website at http://java.sun.com/j2se/1.3/.

For jdb (Java debugger), the command is as follows:

jdb -attach <agent hostname>:<localport>

16.4.2 Debugging example
If the KVM is running on a system called sicily, and the debug agent and debugger 
are running on debughost, then the commands for starting the debug session would 
appear as follows:

■ On the sicily system, build the application test as follows:

javac -g -classpath ../api/classes:../samples/classes
-d output test.java

■ Invoke the preverifier for building a preverified class file.

preverify -classpath ../api/classes:../samples/classes
-d . output

■ On the sicily system, type the following command to invoke the KVM:

kvm -debugger -classpath ../api/classes:../samples/classes
-port 2800 test

■ On the debughost system, assuming the current directory is tools/kdp/
classes, then the following command would invoke the debug agent (debug 
proxy). 

java -classpath . kdp.KVMDebugProxy -l 1234 -p -r sicily
2800 -cp ../../../api/classes:../../../samples/classes

■ On the sicily system, start the JPDA-compliant debugger.

For example, in Forte, open the source file test.java and insert a breakpoint at 
some line in the file.) In Forte, go to the Debug->Connect menu selection. 
(Newer versions of Forte have an Attach menu item). Then, enter debughost 
in the hostname box, and enter 1234 in the port number box. Press OK. 

http://wwws.sun.com/software/sundev/jde/index.html
http://java.sun.com/j2se/1.3/
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At this point the Forte debugger communicates with the KVM, the program 
starts to run, and eventually it hits the breakpoint you inserted. You can now use 
Forte to single-step, read or set variable values, and so forth.
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