
Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, California 95054
U.S.A. 650-960-1300

K Native Interface (KNI)

Specification, Version 1.0

A Lightweight Native Interface for the
Java™ 2 Platform, Micro Edition

December, 2002

Please
Recycle

Copyright © 2002 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this
document. In particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed
at http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other
countries.

This document and the product to which it pertains are distributed under licenses restricting their use, copying, distribution, and
decompilation. No part of the product or of this document may be reproduced in any form by any means without prior written
authorization of Sun and its licensors, if any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Sun, Sun Microsystems, the Sun logo, Java, J2ME, K Virtual Machine (KVM), and Java Developer Connection are trademarks or
registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

The Adobe® logo is a registered trademark of Adobe Systems, Incorporated.

Federal Acquisitions: Commercial Software - Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND
WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE
LEGALLY INVALID.

Copyright © 2002 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. a les droits de propriété intellectuels relatants à la technologie incorporée dans le produit qui est décrit dans
ce document. En particulier, et sans la limitation, ces droits de propriété intellectuels peuvent inclure un ou plus des brevets
américains énumérés à http://www.sun.com/patents et un ou les brevets plus supplémentaires ou les applications de brevet
en attente dans les Etats - Unis et dans les autres pays.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la
distribution, et la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque
moyen que ce soit, sans l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y ena.

Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et
licencié par des fournisseurs de Sun.

Sun, Sun Microsystems, le logo Sun, Java, J2ME, et Java Developer Connection sont des marques de fabrique ou des marques
déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays.

Le logo Adobe® est une marque déposée de Adobe Systems, Incorporated.

LA DOCUMENTATION EST FOURNIE "EN L’ÉTAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES
EXPRESSES OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y
COMPRIS NOTAMMENT TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE
UTILISATION PARTICULIERE OU A L’ABSENCE DE CONTREFAÇON.

http://www.sun.com/patents
http://www.sun.com/patents

iii

Contents

Preface vii

1. Background 1

1.1 Some History 1

1.2 Why KNI? 2

2. KNI Goals 15

3. KNI Scope 19

3.1 Version Information 20

3.2 Class and Interface Operations 20

3.3 Exceptions 20

3.4 Object Operations 20

3.5 Instance Field Access 21

3.6 Static Field Access 21

3.7 String Operations 21

3.8 Array Operations 21

3.9 Parameter (Operand Stack) Access 22

3.10 Handle Operations 22

4. KNI Data Types 23

4.1 Primitive and Reference Types 23

4.1.1 Primitive Types 23

4.1.2 Reference Types 24

iv K Native Interface (KNI) • December, 2002

4.1.3 Return Types 25

4.2 Field IDs 25

4.3 String Formats 26

4.3.1 UTF-8 Strings 26

4.3.2 Class Descriptors 27

4.3.3 Field Descriptors 28

4.4 Constants 28

5. KNI Functions 31

5.1 Version Information 32

5.1.1 KNI_GetVersion 32

5.2 Class and Interface Operations 33

5.2.1 KNI_FindClass 33

5.2.2 KNI_GetSuperClass 34

5.2.3 KNI_IsAssignableFrom 35

5.3 Exceptions 36

5.3.1 KNI_ThrowNew 36

5.3.2 KNI_FatalError 37

5.4 Object Operations 37

5.4.1 KNI_GetObjectClass 37

5.4.2 KNI_IsInstanceOf 38

5.5 Instance Field Access 38

5.5.1 KNI_GetFieldID 38

5.5.2 KNI_Get<Type>Field 39

5.5.3 KNI_Set<Type>Field 40

5.5.4 KNI_GetObjectField 41

5.5.5 KNI_SetObjectField 41

5.6 Static Field Access 42

5.6.1 KNI_GetStaticFieldID 42

5.6.2 KNI_GetStatic<Type>Field 43

5.6.3 KNI_SetStatic<Type>Field 44

5.6.4 KNI_GetStaticObjectField 45

Contents v

5.6.5 KNI_SetStaticObjectField 45

5.7 String Operations 46

5.7.1 KNI_GetStringLength 46

5.7.2 KNI_GetStringRegion 47

5.7.3 KNI_NewString 47

5.7.4 KNI_NewStringUTF 48

5.8 Array Operations 49

5.8.1 KNI_GetArrayLength 49

5.8.2 KNI_Get<Type>ArrayElement 49

5.8.3 KNI_Set<Type>ArrayElement 51

5.8.4 KNI_GetObjectArrayElement 52

5.8.5 KNI_SetObjectArrayElement 52

5.8.6 KNI_GetRawArrayRegion 53

5.8.7 KNI_SetRawArrayRegion 53

5.9 Parameter (Operand Stack) Access 54

5.9.1 KNI_GetParameterAs<Type> 54

5.9.2 KNI_GetParameterAsObject 55

5.9.3 KNI_GetThisPointer 56

5.9.4 KNI_GetClassPointer 57

5.9.5 KNI_ReturnVoid 57

5.9.6 KNI_Return<Type> 58

5.10 Handle Operations 59

5.10.1 KNI_StartHandles 59

5.10.2 KNI_DeclareHandle 60

5.10.3 KNI_IsNullHandle 60

5.10.4 KNI_IsSameObject 61

5.10.5 KNI_ReleaseHandle 61

5.10.6 KNI_EndHandles 62

5.10.7 KNI_EndHandlesAndReturnObject 62

vi K Native Interface (KNI) • December, 2002

6. KNI Programming Overview 63

6.1 The ‘kni.h’ Include File 63

6.2 Sample KNI Application 63

6.2.1 Java Code 63

6.2.2 The Corresponding Native Code 64

6.2.3 Compiling and Running the Sample Application in the KVM 65

7. Examples 67

7.1 Parameter Passing 67

7.2 Returning Values from Native Functions 69

7.2.1 Returning Primitive Values 69

7.2.2 Returning Object References 69

7.2.3 Returning Null Object References 70

7.3 Accessing Fields 70

7.3.1 General Procedure for Accessing Fields 70

7.3.2 Accessing Instance Fields 71

7.3.3 Accessing Static Fields 72

7.4 Accessing Arrays 74

7.5 Accessing Strings 75

vii

Preface

This document, K Native Interface Specification, defines a new native function
interface, called the K Native Interface (KNI), for the Java™ 2 Platform, Micro
Edition (J2ME™). The K Native Interface is designed to improve the portability and
compatibility of the native functions that are written for the K Virtual Machine
(KVM), the CLDC HotSpot™ Implementation JVM, or other Java virtual machine
implementations that support the J2ME Connected, Limited Device Configuration
(CLDC) standard. KNI is designed as a logical subset of the Java Native Interface
(JNI). However, KNI is significantly more lightweight and more efficient in small
devices than a full JNI implementation.

Who Should Use This Specification
The audience for this document includes:

1. Device manufacturers and other companies and individuals who want to port
the K Virtual Machine (KVM) or another J2ME CLDC compliant virtual machine
onto a new platform, and who want to link their own native functions or other
native libraries into the virtual machine.

2. Third party (“clone”) virtual machine vendors and other companies and
individuals who want to write their own Java virtual machine implementation,
and who want to ensure that the native code linked into the virtual machine is
as portable across different J2ME virtual machines as possible.

Note that KNI is an implementation-level interface. A virtual machine conforming to
the CLDC Specification or another J2ME configuration specification is not required
to support the K Native Interface, but may do so at the implementation level.

viii K Native Interface (KNI) • December, 2002

Related Documents
The Java™ Language Specification (Java Series), Second Edition by James Gosling, Bill
Joy, Guy Steele and Gilad Bracha. Addison-Wesley, 2000, ISBN 0-201-31008-2

The Java™ Virtual Machine Specification (Java Series), Second Edition by Tim Lindholm
and Frank Yellin (Addison-Wesley, 1999)

Programming Wireless Devices with the Java™ 2 Platform, Micro Edition (Java Series) by
Roger Riggs, Antero Taivalsaari, and Mark VandenBrink. Addison-Wesley, 2001,
ISBN 0-201-74627-1.

The Java™ Native Interface: Programmer’s Guide and Specification (Java Series) by Sheng
Liang. Addison-Wesley, 1999, ISBN 0-201-32577-2.

Connected, Limited Device Configuration Specification, version 1.0, Java Community
Process, Sun Microsystems, Inc.
http://java.sun.com/aboutJava/communityprocess/final/jsr030/

Java 2 Platform Micro Edition (J2ME™) Technology for Creating Mobile Devices, A
White Paper, Sun Microsystems, Inc.
http://java.sun.com/products/cldc/wp/KVMwp.pdf

Version History
September 7, 2001: The first 0.1 version based on an earlier draft prepared by Efren
Serra.

September 30, 2001: Version 0.2 with significant changes to the goals and high-level
structure of the document.

October 8, 2001: Version 0.3 with updated programming overview and significant
changes to the data type and function chapters.

October 10, 2001: Version 0.4 prepared after detailed review meeting.

November 6, 2001: Version 0.9 with minor revisions to function descriptions.
Removed KNI_GetStringChars. Changed KNI_Throw to KNI_ThrowNew. Added
a small sample program to illustrate string access.

January 3, 2002: Version 0.99 -- Small polishing, revised examples.

January 15, 2002: Version 1.0: Two additional functions, KNI_NewString and
KNI_IsSameObject, added. Final polishing.

http://java.sun.com/aboutJava/communityprocess/final/jsr030/
http://java.sun.com/products/cldc/wp/KVMwp.pdf

Preface ix

January 18, 2002: Version 1.0: Replaced the KNI_SetResultAs* functions with more
portable KNI_Return* functions. Some changes to the handle operations as well.

February 11, 2002: Version 1.0: Minor clarifications to the description of the
KNI_ThrowNew function. Updated the parameter types of KNI_Get/
SetRawArrayRegion functions.

October 18, 2002: Version 1.0: Reformatted the KDWP Specification version 1.0 for
Section 508 Accessibility. No changes in technical content of the specification.

December 5, 2002: Version 1.0: Corrected minor typos in Section 4.3.1.

December 16, 2002: Version 1.0: Documented restriction (no interface support) for
function KNI_GetStaticFieldID in Section 5.6.1.

x K Native Interface (KNI) • December, 2002

1

CHAPTER 1

Background

1.1 Some History
The Java™ 2 Platform, Micro Edition (J2ME™) has recently become very popular in
the consumer device space. The roots of the J2ME platform can be traced back to
the Spotless research project that was started at Sun Labs in January 1998. The
Spotless project designed a new, compact, highly portable Java™ virtual machine
that was aimed specifically for small, resource-constrained devices such as cellular
phones, pagers, personal organizers, home appliances, and the likes. The product
version of the Spotless virtual machine became known as the K Virtual Machine
(KVM).

The research goal of the Spotless project was to build a Java execution environment
that would have a total memory footprint of only one tenth of the size of the full
Java execution environment in 1998. Consequently, the designers of the Spotless
system left out several features that were considered overly expensive or
unnecessary for embedded systems use.

One of the features that was intentionally left out of the Spotless system was
support for the Java Native Interface (JNI). The Java Native Interface is an API that
is intended to provide binary compatibility for the native functions that are linked
into a Java virtual machine, so that the virtual machine can perform operating
system specific operations such as file system calls, graphics operations, and so on.
By using the Java Native Interface, multiple Java virtual machine implementations
can utilize the same native function implementations, and dynamically load the
necessary native libraries in binary form. Unfortunately, JNI is rather expensive in
terms of memory footprint and performance overhead. Furthermore, some of the
JNI APIs pose potential security threats in the absence of the full Java security
model.

The official standardization efforts for the Java 2 Platform, Micro Edition were
started in October 1999. The Connected, Limited Device Configuration (CLDC)
standardization effort (Java Specification Request JSR-30) decided to ratify the
decision to leave out the Java Native Interface support. The way native functions

2 K Native Interface (KNI) • December, 2002

are linked into a virtual machine conforming to the CLDC Specification is strictly
an implementation issue. Consequently, the product version of the Spotless system,
the K Virtual Machine, does not support any of the JNI APIs.

1.2 Why KNI?
Currently, the K Virtual Machine has a very low-level VM-specific interface for
native function support. When implementing new native functions for the K
Virtual Machine, the programmer uses exactly the same API calls as the KVM
would use internally for the equivalent operations. For example, to push and pop
parameters to and from the execution stack in native functions, the native function
programmer would use exactly the same ‘pushStack’ and ‘popStack’ operations
that the KVM uses internally for various operations. Similarly, to read or change
data stored in the fields of objects, the native function programmer would use
exactly the same low-level constant pool resolution operations that the KVM uses
internally.

While this approach is highly efficient and well-suited for experienced
programmers who understand how the K Virtual Machine works, this approach
has some drawbacks. For instance, since this approach exposes the internal data
structures and operations of the KVM to the native function programmer, any
changes to those internal structures and operations in future versions of the KVM
could render the existing native function implementations invalid. Due to the
dependency on KVM-specific data structures and operations, this also means that
native functions written for the KVM would not work with any other Java virtual
machine without considerable modifications.

When used by less experienced programmers, the current native function interface
of the KVM can also be rather error-prone because of garbage collection issues.
Starting from version 1.0.2, the KVM has a compacting garbage collector. This
means that any time the programmer (directly or indirectly) calls functions that
allocate memory from the Java heap, therefore potentially causing the VM to collect
garbage, the existing objects in the Java heap may move to a new location in
memory. As a result, any native pointers that the native function programmer
holds to objects in the Java heap may become invalid. Unless the native function
programmer is very careful, this can lead to spurious errors that are extremely
difficult to trace without special tools.

Even though the majority of the programmers who need to add new native
functions to the KVM are usually experienced embedded systems developers (e.g.,
software engineers working for major device manufacturers), it seems unnecessary
to require all the native function programmers to be intimately familiar with the
internal data structures and garbage collection details of the KVM. Also, as the
number of library standardization efforts for the Java 2 Micro Edition grows, more
and more programmers will need to add new native functionality to the KVM or
any new virtual machine conforming to the CLDC Specification.

Chapter 1 Background 3

To facilitate the integration of native functionality across a wide variety of CLDC
target devices, there is a need for a native function interface that provides high
performance and low memory overhead without the pitfalls of low-level interfaces
discussed above. For this purpose, a new interface called the K Native Interface
(KNI) has been developed.

4 K Native Interface (KNI) • December, 2002

15

CHAPTER 2

KNI Goals

A Java virtual machine commonly needs access to various native functions in order
to interact with the outside world. For instance, all the low-level graphics
functions, file access functions, networking functions, or other similar routines that
depend on the underlying operating system services typically need to be written in
native code.

The way these native functions are made available to the Java virtual machine can
vary considerably from one virtual machine implementation to another. In order to
minimize the work that is needed when porting the native functions, the Java
Native Interface (JNI) standard was created.

In a traditional Java virtual machine implementation, the Java Native Interface
serves two purposes:

1. JNI serves as a common interface for virtual machine implementers so that the
same native functions will work unmodified with different virtual machines.

2. JNI provides Java-level APIs that make it possible for a Java programmer to
dynamically load libraries and access native functions in those libraries.

Unfortunately, because of its general nature, JNI is rather expensive and introduces
a significant memory and performance overhead to the way the JVM calls native
functions. Also, the ability to dynamically load and call arbitrary native functions
from Java programs could pose significant security problems in the absence of the
full Java 2 security model.

High-level goal of the KNI. The high-level goal of the K Native Interface
Specification is to define a logical subset of the Java Native Interface that is appropriate
for low-power, memory-constrained devices. KNI follows the function naming
conventions and other aspects of the JNI as far as this is possible and reasonable
within the strict memory limits of CLDC target devices and in the absence of the
full Java 2 security model. Since KNI is intended to be significantly more
lightweight than JNI, some aspects of the interface, such as the parameter passing
conventions, have been completely redesigned and are significantly different from
JNI.

16 K Native Interface (KNI) • December, 2002

More specifically, the goals of the KNI include the following:

■ Source-level portability of native code. KNI is intended to make it possible to
share source code of native functions so that the same native function source
code can be used in multiple virtual machines without modifications (of course,
native code that is operating system specific will have to be ported from one
system to another.)

■ Isolation of virtual machine implementation details from the native functions.
KNI is intended to isolate the native function programmer from virtual machine
implementation details. When writing new native functions, the programmer is
not required to know anything about garbage collection details, object layout,
class data structures, include file dependencies, or any other VM-specific
implementation details.

■ Memory efficiency and minimal performance overhead. KNI is intended to be
significantly more efficient and compact than a full JNI implementation. Unlike
in JNI, no temporary data structures or “marshalling” of parameter passing is
required at the implementation level.

As mentioned above, KNI is a “logical subset” of JNI that follows the JNI
conventions as much as it makes sense given the strict memory constraints, but
with some considerable design and implementation differences. The list below
summarizes the most significant design differences between the JNI and KNI:

1. KNI is an implementation-level API. KNI is an implementation-level API that
is targeted primarily at VM implementers and device manufacturers who need
to add new native functions to an existing J2ME virtual machine. Unlike JNI, the
presence of the KNI is completely invisible to the Java programmer.

2. No binary compatibility of native code. KNI is intended to provide source-level
compatibility of native code. Unlike JNI, KNI does not guarantee that binary
libraries containing native code could be linked into different virtual machines
without recompilation.

3. No support for dynamically loaded native libraries. KNI does not provide any
mechanisms for dynamically loading native libraries into the virtual machine.
Hence, any new functionality added via the native function mechanism must be
done by modifying the VM native function tables and rebuilding from source.
This is compliant with the security requirements imposed by the CLDC
Specification.

4. No Java-level access to arbitrary native functions. Unlike JNI, KNI provides no
Java-level APIs to invoke other native functions than those that have been pre-
built into the Java virtual machine implementation. This is compliant with the
security requirements imposed by the CLDC Specification.

5. No class creation, object instantiation or Java method calling from native
functions. To greatly simplify the implementation of the native interface and to
keep the implementation small and less error-prone, KNI does not provide any
mechanisms for creating new Java classes, instantiating objects (other than
strings), or calling Java methods from native code. When creating new objects
that need to be manipulated in native code, the necessary objects must be
created at the Java level and passed to native code as parameters.

Chapter 2 KNI Goals 17

6. Parameter passing conventions are different from JNI. To reduce
implementation overhead, the parameter passing conventions of KNI are
significantly different from JNI. KNI uses a “register-based” approach in which
arguments can be read directly from the stack frame in an implementation-
independent fashion. Unlike in the old KVM native interface, no explicit
pushing or popping of parameters is required or allowed.

18 K Native Interface (KNI) • December, 2002

19

CHAPTER 3

KNI Scope

KNI is designed to be a logical subset of the Java Native Interface (JNI). The scope
of KNI compared to JNI is presented in TABLE 1 below. For a summary of the JNI
Scope, refer to the Java Native Interface Programmer’s Guide and Specification, pages
175–179.

In addition, KNI introduces a set of new operations for method parameter
(operand stack) access, and for manipulating handles to objects. These operations
are KNI-specific and not available in the JNI.

TABLE 1 JNI vs. KNI Scope

JNI Function Categories Supported by KNI (YES/NO)

Version Information YES

Class and Interface Operations YES

Exceptions YES

Global and Local References NO

Object Operations YES

Instance Field Access YES

Static Field Access YES

Instance Method Calls NO

Static Method Calls NO

String Operations YES

Array Operations YES

Native Method Registration NO

Monitor Operations NO

JavaVM Interface NO

Reflection Support NO

20 K Native Interface (KNI) • December, 2002

Each of the supported function categories is introduced in more detail below. Note
that the naming of these functions is different from JNI. Each function supported
by the KNI uses a prefix “KNI_” in front of the function name.

3.1 Version Information
KNI_GetVersion function returns the version of the KNI interface.

3.2 Class and Interface Operations
■ KNI_FindClass returns a reference to a class or interface type of a given name.

■ KNI_GetSuperClass function returns the superclass of a given class or
interface.

■ KNI_IsAssignableFrom function checks if an instance of one class or interface
can be assigned to an instance of another class or interface. This function is
useful for runtime type checking.

3.3 Exceptions
■ KNI_ThrowNew function raises an exception in the current thread.

■ KNI_FatalError function prints a descriptive message and terminates the
current virtual machine instance.

3.4 Object Operations
■ KNI_GetObjectClass function returns the class of a given instance.

■ KNI_IsInstanceOf function checks whether an object is an instance of a given
class or interface.

Chapter 3 KNI Scope 21

3.5 Instance Field Access
■ KNI_GetFieldID function performs a symbolic lookup on a given class and

returns the field ID of a named instance field.

■ KNI_Get<Type>Field and KNI_Set<Type>Field functions access the
instance fields of primitive or reference types.

3.6 Static Field Access
■ KNI_GetStaticFieldID function performs a symbolic lookup on a given class

and returns the field ID of a named static field.

■ KNI_GetStatic<Type>Field and KNI_SetStatic<Type>Field functions
access the static fields of primitive or reference types.

3.7 String Operations
■ KNI_GetStringLength function returns the number of Unicode characters in a

string represented by a java.lang.String object.

■ KNI_GetStringRegion function provides access to the content of a
java.lang.String object.

■ KNI_NewString function creates a java.lang.String object from the given
Unicode string.

■ KNI_NewStringUTF function creates a java.lang.String object from the
given UTF-8 string.

3.8 Array Operations
■ KNI_GetArrayLength function returns the number of elements in an array.

■ KNI_Get<Type>ArrayElement and KNI_Set<Type>ArrayElement
functions allow a native method to access arrays elements of primitive or
reference types.

■ KNI_GetRawArrayRegion and KNI_SetRawArrayRegion functions copy
multiple elements in or out of arrays of primitive types.

22 K Native Interface (KNI) • December, 2002

3.9 Parameter (Operand Stack) Access
■ KNI_GetParameterAs<Type> functions allow a native method to access the

method parameters (local variables) in the operand stack.

■ KNI_GetThisPointer function allows a non-static native method to access the
‘this’ pointer in the current stack frame.

■ KNI_GetClassPointer function allows a static native method to access the
class pointer.

■ KNI_Return<Type> functions allow a native method to return a value of a
primitive type.

3.10 Handle Operations
■ KNI_StartHandles function allocates space for a specified number of handles

that can be used for holding object pointers inside a native function.

■ KNI_DeclareHandle function defines a local handle that can hold an object
pointer inside a native function.

■ KNI_IsNullHandle function checks if a handle is null, i.e., not pointing to any
object at the time.

■ KNI_IsSameObject function checks if two handles refer to the same object.

■ KNI_ReleaseHandle function sets the value of a handle to null.

■ KNI_EndHandles function undeclares and deallocates the handles that were
allocated earlier by the matching KNI_StartHandles call.

■ KNI_EndHandlesAndReturnObject function undeclares and deallocates the
handles that were allocated earlier by the matching KNI_StartHandles call, and
returns a value of a reference type.

23

CHAPTER 4

KNI Data Types

This chapter specifies the native data types supported by KNI. The data types are
defined in the kni.h header file.

4.1 Primitive and Reference Types
KNI defines a set of C/C++ types that correspond to the primitive and reference
types in the Java programming language. These primitive and reference types are
used for referring to data structures inside KNI functions.

In addition, KNI defines special return types that must be used for specifying the
return type of each native function that uses the KNI API.

To ensure maximum portability of native code, you shall not use any VM-specific
data types in your native code that uses the KNI API.

4.1.1 Primitive Types
TABLE 2 describes the primitive types in the Java programming language and the
corresponding types in the KNI. Just like their counterparts in the Java
programming language, all the primitive types in the KNI have well-defined sizes.

TABLE 2 The KNI primitive types

Java language type KNI primitive type Description

boolean jboolean unsigned 8 bits

byte jbyte signed 8 bits

char jchar unsigned 16 bits

short jshort signed 16 bits

int jint signed 32 bits

24 K Native Interface (KNI) • December, 2002

The jsize integer type is used to describe cardinal indices and sizes; this is
accomplished via the C/C++ typedef mechanism:

 typedef jint jsize;

4.1.2 Reference Types
KNI includes a number of reference types that correspond to the different kinds of
reference types in the Java programming language. The KNI reference types are
organized in the type hierarchy shown below.

FIGURE 1 KNI reference types

When used in conjunction with The C Programming Language, all other KNI
reference types are defined to be the same as type jobject by the use of the C
typedef mechanism. For example:

long jlong signed 64 bits

float jfloat 32 bits

double jdouble 64 bits

TABLE 2 The KNI primitive types

Java language type KNI primitive type Description

jobject

jclass

jstring

jarray

jobjectArray

jbooleanArray

jcharArray

jshortArray

jbyteArray

jintArray

jlongArray

jfloatArray

jdoubleArray

jthrowable

(all objects)

(java.lang.Class instances)

(java.lang.String instances)

(arrays)

(java.lang.Object[])

(boolean[])

(byte[])

(char[])

(short[])

(int[])

(long[])

(float[])

(double[])

(java.lang.Throwable objects)

Chapter 4 KNI Data Types 25

 typedef struct _jobject* jobject;
 typedef jobject jclass;

Note that jobject is intended to be an opaque type. That is, the KNI programmer
may not rely on the internal structure of this type, as its definition may vary from
one virtual machine implementation to another.

4.1.3 Return Types
KNI defines special return types that must be used when defining the return type
for each native function that uses the KNI. The following return types are
supported.

The presence of the return types allows the virtual machine implementing the K
Native Interface to use different implementation techniques for returning values
back from native functions. For example, in the KVM implementation of the KNI,
the actual C data type of the KNI return types is ‘void’, whereas other virtual
machines may need to map the return types to applicable VM-specific data types.

4.2 Field IDs
Field IDs are regular C pointer types:

 struct _jfieldID; /* opaque C structure */
 typedef struct _jfieldID* jfieldID; /* field ID */

TABLE 3 Native function return types

Java language type KNI type Corresponding KNI return type

void <n/a> KNI_RETURNTYPE_VOID

boolean jboolean KNI_RETURNTYPE_BOOLEAN

byte jbyte KNI_RETURNTYPE_BYTE

char jchar KNI_RETURNTYPE_CHAR

short jshort KNI_RETURNTYPE_SHORT

int jint KNI_RETURNTYPE_INT

long jlong KNI_RETURNTYPE_LONG

float jfloat KNI_RETURNTYPE_FLOAT

double jdouble KNI_RETURNTYPE_DOUBLE

<object ref> jobject KNI_RETURNTYPE_OBJECT

26 K Native Interface (KNI) • December, 2002

Note that fieldID is intended to be an opaque type. That is, the KNI programmer
may not rely on the internal structure of this type, as its definition may vary from
one virtual machine implementation to another.

4.3 String Formats
The KNI uses UTF-8 strings in the const char* format for reading class names
and field names that are provided as parameters to certain KNI functions. These
UTF-8 strings are converted to Unicode strings inside the KNI implementation as
necessary. Some KNI operations read and return data in buffers that are assumed to
be large enough for Unicode strings (each Unicode character is 16 bits wide.)

4.3.1 UTF-8 Strings
UTF-8 strings are encoded so that character sequences that contain only non-null
ASCII characters can be represented using only one byte per character, but
characters of up to 16 bits can be represented. All characters in the range ‘\u0001’
to ‘\u007f’ are represented by a single byte, as follows:

The seven bits of data in the byte give the value of the character that is represented.
The null character (‘\u0000’) and characters in the range ‘\u0080’ to ‘\u07ff’
are represented by a pair of bytes, x and y, as follows:

x:

y:

The bytes represent the character with the value ((x & 0x1f) << 6) + (y &
0x3f).

Characters in the range ‘\u0800’ to ‘\uffff’ are represented by three bytes, x, y,
and z, as follows:

0 bits 6–0

1 1 0 bits 10-6

1 0 bits 5-0

Chapter 4 KNI Data Types 27

x:

y:

z:

The character with the value ((x & 0xf) << 12) + ((y & 0x3f) << 6) +
(z & 0x3f) is represented by the three bytes.

There are two differences between this format and the standard UTF-8 format.
First, the null byte (byte)0 is encoded using the two-byte format rather than the
one-byte format. This means that KNI UTF-8 strings never have embedded nulls.
Second, only the one-byte, two-byte, and three-byte formats are used. KNI does not
recognize the longer UTF-8 formats.

4.3.2 Class Descriptors
A class descriptor represents the name of a class or an interface. It can be derived
from a fully qualified class or interface name as defined in The Java Language
Specification by substituting the “.” character with the “/” character. For instance,
the class descriptor for java.lang.String is:

 “java/lang/String”

Array classes are formed using the “[” character followed by the field descriptor of
the element type. The class descriptor for “int[]” is:

 “[I”

and the class descriptor for “double[][][]” is:

 “[[[D”

1 1 1 0 bits 15-12

1 0 bits 11-6

1 0 bits 5-0

28 K Native Interface (KNI) • December, 2002

4.3.3 Field Descriptors
Table TABLE 4 shows the field descriptors for the primitive types exported by the
KNI.

The field descriptors of reference types begin with the “L” character, followed by
the class descriptor, and terminated by the “;” character. Field descriptors of array
types are formed following the same rule as class descriptors of array classes.
TABLE 5 contains examples of field descriptors for reference types and their Java
programming language counterparts.

4.4 Constants
File ‘kni.h’ defines certain constants and macros that are commonly used in native
functions. These include the following:

■ KNIEXPORT
■ KNI_FALSE
■ KNI_TRUE
■ KNI_OK
■ KNI_ERROR
■ KNI_VERSION

TABLE 4 The field descriptors for the KNI primitive types

Field Descriptor The Java language type

Z boolean

B byte

C char

S short

I int

J long

F float

D double

TABLE 5 Examples of field descriptors for reference types

Field Descriptor The Java language type

“Ljava/lang/String;” String

“[I” int[]

“[Ljava/lang/Object;” java.lang.Object[]

Chapter 4 KNI Data Types 29

KNIEXPORT is a macro used to specify the calling and linkage conventions of both
KNI functions and native method implementations. The programmer is
recommended to place the KNIEXPORT macro before the function return type. For
example:

 KNIEXPORT void Java_mypackage_Cls_f();

is the prototype for a C function that implements method f of class Cls in package
mypackage.

KNI_FALSE and KNI_TRUE are constants defined for the jboolean type:

 #define KNI_FALSE 0
 #define KNI_TRUE 1

KNI_OK represents the successful return value of a few KNI functions, and
KNI_ERR is sometimes used to represent error conditions.

 #define KNI_OK 0
 #define KNI_ERR -1

KNI_VERSION represents the KNI version number.

 #define KNI_VERSION 0x00010000 /* KNI version 1.0 */

30 K Native Interface (KNI) • December, 2002

31

CHAPTER 5

KNI Functions

This chapter specifies the KNI functions. For each KNI function, we provide the
following information:

■ function prototype,

■ a detailed description, including parameters, return values, and potential
exceptions.

Note that since KNI is an implementation-level interface, the interface places some
important restrictions and expectations on the programmer.

We use the adverb must to describe restrictions and conventions that the KNI
programmer is expected to adhere to. For instance, when some KNI function must
receive a non-null object as a parameter, it is the programmer’s responsibility not to
pass a null value to that function. Programmer-level restrictions like this allow the
KNI implementation to be more efficient, as the KNI implementation does not
check for null pointers or other similar conditions. In general, KNI is a “shoot
yourself in the foot” interface that performs only a minimum number of checks at
runtime to ensure the validity of the parameters.

32 K Native Interface (KNI) • December, 2002

5.1 Version Information

5.1.1 KNI_GetVersion

TABLE 6 KNI_GetVersion

Function Description

Prototype jint KNI_GetVersion();

Description Returns the version number of the KNI interface.

Parameters None.

Return Values Returns the version number of the KNI interface. Hexadecimal
number “0x00010000” identifies KNI version 1.0.

Exceptions None.

Chapter 5 KNI Functions 33

5.2 Class and Interface Operations

5.2.1 KNI_FindClass

TABLE 7 KNI_FindClass

Function Description

Prototype void KNI_FindClass(const char* name, jclass
classHandle);

Description Initializes a handle with a reference to the named class or interface.
The function assumes that the class has already been loaded to the
system and properly initialized. If this is not the case, or if no class
is found, the handle will be initialized to NULL.

The name argument is a class descriptor (See Section 4.3.2 “Class
Descriptors”). For example, the descriptor for the
java.lang.String class is:

 “java/lang/String”

The descriptor of the array class java.lang.object[] is:

 “[Ljava/lang/Object;”.

Parameters name: the descriptor of the class or interface to be returned. The
name is represented as a UTF-8 string.
classHandle: a handle in which the class pointer will be returned.

Return Values Returns nothing directly, but returns the class pointer in the
‘classHandle’ handle. If the class cannot be found, the returned
handle will be set to NULL.

Exceptions None.

34 K Native Interface (KNI) • December, 2002

5.2.2 KNI_GetSuperClass

TABLE 8 KNI_GetSuperClass

Function Description

Prototype void KNI_GetSuperClass(jclass classHandle, jclass
superclassHandle);

Description Initializes the superclassHandle handle to contain a pointer to
the superclass of the given class (represented by classHandle). If
classHandle represents the class java.lang.Object, then the
function sets the superclassHandle handle to NULL.

Parameters classHandle: a handle initialized with a reference to the class
object whose superclass is to be determined.
superclassHandle: a handle which, upon return from this
function, will contain a reference to the superclass object.

Return Values Returns nothing directly, but parameter superclassHandle is
used as a result value.

Exceptions None.

Chapter 5 KNI Functions 35

5.2.3 KNI_IsAssignableFrom

TABLE 9 KNI_IsAssignableFrom

Function Description

Prototype jboolean KNI_IsAssignableFrom(jclass classHandle1,
jclass classHandle2);

Description Determines whether an object of class or interface classHandle1
can be safely cast to a class or interface classHandle2.

Parameters classHandle1: handle initialized with a reference to the first class
or interface argument
classHandle2: handle initialized with a reference to the second
class or interface argument

Return Values Returns KNI_TRUE if any of the following is true:

The first and second argument refer to the same class or interface
The first argument refers to a subclass of the second argument
The first argument refers to a class that has the second argument as
one of its interfaces
The first and second arguments both refer to array of classes with
element types X and Y, and KNI_IsAssignableFrom(X, Y) is
KNI_TRUE; otherwise it returns KNI_FALSE

Exceptions None.

36 K Native Interface (KNI) • December, 2002

5.3 Exceptions

5.3.1 KNI_ThrowNew

Note – Since KNI does not allow Java code to be run from native methods,
KNI_ThrowNew does not run the constructor of the exception object when it creates a
new exception object. If you use KNI_ThrowNew to throw exceptions that have other
fields than those defined in class java.lang.Throwable, the additional fields will
not be initialized.

TABLE 10 KNI_ThrowNew

Function Description

Prototype jint KNI_ThrowNew(const char* name, const char*
message);

Description Instantiates an exception object with the message specified by
message, and causes that exception to be thrown. A thrown
exception will be pending in the current thread, but does not
immediately disrupt native code execution. The actual exception
will be thrown when the program control returns from the native
function back to the virtual machine. Note that KNI_ThrowNew
does not run the constructor on the new exception object.

Parameters name: the name of a java.lang.Throwable class as a UTF-8
string.
message: the message used to construct the
java.lang.Throwable object; represented as a UTF-8 string.

Return Values KNI_OK on success; otherwise KNI_ERR.

Exceptions None.

Chapter 5 KNI Functions 37

5.3.2 KNI_FatalError

5.4 Object Operations

5.4.1 KNI_GetObjectClass

TABLE 11 KNI_FatalError

Function Description

Prototype void KNI_FatalError(const char* message);

Description Prints an error message to the system’s standard error output, and
terminates the execution of the virtual machine immediately.

Parameters message: the error message as a UTF-8 string.

Return Values This function does not return.

Exceptions None.

TABLE 12 KNI_GetObjectClass

Function Description

Prototype void KNI_GetObjectClass(jobject objectHandle,
jclass classHandle);

Description Sets the handle classHandle to point to the class of the object
represented by objectHandle.

Parameters objectHandle: a handle pointing to an object whose class is being
sought.
classHandle: a handle which, upon return of this function, will
contain a reference to the class of this object.

Return Values Returns nothing directly, but parameter classHandle is used as a
return value.

Exceptions None.

38 K Native Interface (KNI) • December, 2002

5.4.2 KNI_IsInstanceOf

5.5 Instance Field Access

5.5.1 KNI_GetFieldID

TABLE 13 KNI_IsInstanceOf

Function Description

Prototype jboolean KNI_IsInstanceOf(jobject objectHandle,
jclass classHandle);

Description Tests whether an object represented by objectHandle is an
instance of a class or interface represented by classHandle.

Parameters objectHandle: a handle pointing to an object.
clazz: a handle pointing to a class or interface.

Return Values Returns KNI_TRUE if the given object is an instance of given class,
KNI_FALSE otherwise.

Exceptions None.

TABLE 14 KNI_GetFieldID

Function Description

Prototype jfieldID KNI_GetFieldID(jclass classHandle, const
char* name, const char* signature);

Description Returns the field ID of an instance field of the class represented by
classHandle. The field is specified by its name and signature.
The Get<Type>Field and Set<Type>Field families of accessor
functions use field IDs to retrieve the value of instance fields. The
field must be accessible from the class referred to by classHandle.

Parameters classHandle: a handle pointing to a class whose field ID will be
retrieved.
name: the field name as a UTF-8 string.
signature: the field descriptor as a UTF-8 string.

Return Values Returns a field ID or NULL if the lookup fails for any reason.

Exceptions None.

Chapter 5 KNI Functions 39

5.5.2 KNI_Get<Type>Field

This family of functions consists of eight members that are listed in the table below.
Note that those functions that manipulate jfloat or jdouble data types are
assumed to be available only if the underlying virtual machine or J2ME
configuration supports floating point data types.

TABLE 15 KNI_Get<Type>Field

Function Description

Prototype <NativeType> KNI_Get<Type>Field(jobject
objectHandle, jfieldID fieldID);

Description Returns the value of an instance field of a primitive type. The field
to access is denoted by fieldID.

Parameters objectHandle: a handle pointing to an object whose field is to be
accessed.
fieldID: the field ID of the given instance field.

Return Values Returns the value of a primitive instance field.

Exceptions None.

TABLE 16 KNI_Get<Type>Field Functions

KNI_Get<Type>Field <NativeType>

KNI_GetBooleanField jboolean

KNI_GetByteField jbyte

KNI_GetCharField jchar

KNI_GetShortField jshort

KNI_GetIntField jint

KNI_GetLongField jlong

KNI_GetFloatField jfloat

KNI_GetDoubleField jdouble

40 K Native Interface (KNI) • December, 2002

5.5.3 KNI_Set<Type>Field

This family of functions consists of nine members that are listed in the table below.
Note that those functions that manipulate jfloat or jdouble data types are
assumed to be available only if the underlying virtual machine or J2ME
configuration supports floating point data types.

TABLE 17 KNI_Set<Type>Field

Function Description

Prototype void KNI_Set<Type>Field(jobject objectHandle,
jfieldID fieldID, <NativeType> value);

Description Sets the value of an instance field of a primitive type. The field to
modify is denoted by fieldID.

Parameters objectHandle: a handle pointing to an object whose field is to be
modified.
fieldID: the field ID of the given instance field.
value: the value to set to the instance field.

Return Values void.

Exceptions None.

TABLE 18 KNI_Set<Type>Field Functions

KNI_Set<Type>Field <NativeType>

KNI_SetBooleanField jboolean

KNI_SetByteField jbyte

KNI_SetCharField jchar

KNI_SetShortField jshort

KNI_SetIntField jint

KNI_SetLongField jlong

KNI_SetFloatField jfloat

KNI_SetDoubleField jdouble

Chapter 5 KNI Functions 41

5.5.4 KNI_GetObjectField

5.5.5 KNI_SetObjectField

TABLE 19 KNI_GetObjectField

Function Description

Prototype void KNI_GetObjectField(jobject objectHandle,
jfieldID fieldID, jobject toHandle);

Description Returns the value of a field of a reference type, and assigns it to the
handle toHandle. The field to access is denoted by fieldID.

Parameters objectHandle: a handle pointing to an object whose whose field is
to be accessed.
fieldID: the field ID of the given instance field.
toHandle: a handle to which the return value will be assigned.

Return Values Returns nothing directly, but handle toHandle will contain the
return value.

Exceptions None.

TABLE 20 KNI_SetObjectField

Function Description

Prototype void KNI_SetObjectField(jobject objectHandle,
jfieldID fieldID, jobject fromHandle);

Description Sets the value of an instance field of a reference type. The field to
modify is denoted by fieldID.

Parameters objectHandle: a handle pointing to an object whose field is to be
modified.
fieldID: the field ID of the given instance field.
fromHandle: a handle pointing to an object that will be assigned to
the field.

Return Values void.

Exceptions None.

42 K Native Interface (KNI) • December, 2002

5.6 Static Field Access

5.6.1 KNI_GetStaticFieldID

TABLE 21 KNI_GetStaticField

Function Description

Prototype jfieldID KNI_GetStaticFieldID(jclass classHandle,
const char* name, const char* signature);

Description Returns the field ID of a static field of the class represented by
classHandle. The field is specified by its name and signature.
The GetStatic<Type>Field and SetStatic<Type>Field
families of accessor functions use field IDs to retrieve the value of
static fields. The field must be accessible from the class referred to
by classHandle.

Parameters classHandle: a handle pointing to a class whose field ID will be
retrieved.
name: the field name as a UTF-8 string
signature: the field descriptor as a UTF-8 string.

Return Values Returns a field ID or NULL if the lookup fails for any reason.

Exceptions Lookup of field IDs in interfaces is not supported.

Chapter 5 KNI Functions 43

5.6.2 KNI_GetStatic<Type>Field

This family of functions consists of eight members that are listed in the table below.
Note that those functions that manipulate jfloat or jdouble data types are
assumed to be available only if the underlying virtual machine or J2ME
configuration supports floating point data types:

TABLE 22 KNI_GetStatic<Type>Field

Function Description

Prototype <NativeType> KNI_GetStatic<Type>Field(jclass
classHandle, jfield fieldID);

Description Returns the value of a static field of a primitive type. The field to
access is denoted by fieldID.

Parameters classHandle: a handle pointing to a class or interface whose
static field is to be accessed.
fieldID: a field ID of the given class.

Return Values Returns the value of a static field of a primitive type.

Exceptions None.

TABLE 23 KNI_GetStatic<Type>Field Functions

KNI_GetStatic<Type>Field <NativeType>

KNI_GetStaticBooleanField jboolean

KNI_GetStaticByteField jbyte

KNI_GetStaticCharField jchar

KNI_GetStaticShortField jshort

KNI_GetStaticIntField jint

KNI_GetStaticLongField jlong

KNI_GetStaticFloatField jfloat

KNI_GetStaticDoubleField jdouble

44 K Native Interface (KNI) • December, 2002

5.6.3 KNI_SetStatic<Type>Field

This family of functions consists of eight members that are listed in the table below.
Note that those functions that manipulate jfloat or jdouble data types are
assumed to be available only if the underlying virtual machine or J2ME
configuration supports floating point data types:

TABLE 24 KNI_SetStatic<Type>Field

Function Description

Prototype void KNI_SetStatic<Type>Field(jclass
classHandle, jfieldID fieldID, <NativeType>
value);

Description Sets the value of a static field of a primitive type. The field to
modify is denoted by fieldID.

Parameters classHandle: a handle pointing to the class or interface whose
static field is to be modified.
fieldID: a field ID of the given class.
value: the value to set to the static field.

Return Values void.

Exceptions None.

TABLE 25 KNI_SetStatic<Type>Field Functions

KNI_SetStatic<Type>Field <NativeType>

KNI_SetStaticBooleanField jboolean

KNI_SetStaticByteField jbyte

KNI_SetStaticCharField jchar

KNI_SetStaticShortField jshort

KNI_SetStaticIntField jint

KNI_SetStaticLongField jlong

KNI_SetStaticFloatField jfloat

KNI_SetStaticDoubleField jdouble

Chapter 5 KNI Functions 45

5.6.4 KNI_GetStaticObjectField

5.6.5 KNI_SetStaticObjectField

TABLE 26 KNI_GetStaticObjectField

Function Description

Prototype void KNI_GetStaticObjectField(jclass classHandle,
jfield fieldID, jobject toHandle);

Description Returns the value of a static field of a reference type, and assigns
it to the handle toHandle. The field to access is denoted by
fieldID.

Parameters classHandle: a handle pointing to a class or interface whose
static field is to be accessed.
fieldID: a field ID of the given class.
toHandle: a handle to which the return value will be assigned.

Return Values Nothing directly, but handle toHandle will contain the return
value.

Exceptions None.

TABLE 27 KNI_SetStaticObjectField

Function Description

Prototype void KNI_SetStaticObjectField(jclass classHandle,
jfield fieldID, jobject fromHandle);

Description Sets the value of a static field of a reference type. The field to
modify is denoted by fieldID.

Parameters classHandle: a handle pointing to the class or interface whose
whose static field is to be modified.
fieldID: a field ID of the given class.
fromHandle: a handle pointing to an object that will assigned to
the field.

Return Values void.

Exceptions None.

46 K Native Interface (KNI) • December, 2002

5.7 String Operations

5.7.1 KNI_GetStringLength

TABLE 28 KNI_GetStringLength

Function Description

Prototype jsize KNI_GetStringLength(jstring stringHandle);

Description Returns the number of Unicode characters in a
java.lang.String object. If the given string handle is NULL, the
function returns -1.

Parameters stringHandle: a handle pointing to a java.lang.String string
object whose length is to be determined.

Return Values Returns the length of the string, or -1 if the given string handle is
NULL.

Exceptions None.

Chapter 5 KNI Functions 47

5.7.2 KNI_GetStringRegion

5.7.3 KNI_NewString

TABLE 29 KNI_GetStringRegion

Function Description

Prototype void KNI_GetStringRegion(jstring stringHandle,
jsize offset, jsize n, jchar* jcharbuf);

Description Copies a number of Unicode characters from a
java.lang.String object (denoted by stringHandle),
beginning at offset, to the given buffer jcharbuf. No range
checking is performed. It is the responsibility of the native function
programmer to allocate the return buffer, and to make sure that it is
large enough.

Parameters stringHandle: a handle pointing to a java.lang.String object
whose contents are to be copied.
offset: the offset within the string object at which to start copying
(offset 0: first character in the Java string.)
n: the number of 16-bit Unicode characters to copy.
jcharbuf: a pointer to a buffer to hold the Unicode characters.

Return Values Data is returned in user-allocated buffer jcharbuf. Each character
in the returned buffer is 16 bits wide.

Exceptions None.

TABLE 30 KNI_NewString

Function Description

Prototype void KNI_NewString(const jchar* uchars, jsize
length, jstring stringHandle);

Description Creates a java.lang.String object from the given Unicode
sequence. The resulting object is returned to the caller via the
stringHandle handle.

Parameters uchars: a Unicode sequence that will make up the contents of the
new string object.
stringHandle: a handle to hold the reference to the new
java.lang.String object..

Return Values Returns nothing directly, but handle stringHandle will contain a
reference to the new string object.

Exceptions OutOfMemoryError if the virtual machine runs out of memory.

48 K Native Interface (KNI) • December, 2002

5.7.4 KNI_NewStringUTF

TABLE 31 KNI_NewStringUTF

Function Description

Prototype void KNI_NewStringUTF(const char* utf8chars,
jstring stringHandle);

Description Creates a java.lang.String object from the given UTF-8 string.
The resulting object is returned to the caller via the stringHandle
handle.

Parameters utf8chars: a UTF-8 string that will make up the contents of the
new string object.
lenght: length of the Unicode string.
stringHandle: a handle to hold the reference to the new
java.lang.String object..

Return Values Returns nothing directly, but handle stringHandle will contain a
reference to the new string object.

Exceptions OutOfMemoryError if the virtual machine runs out of memory.

Chapter 5 KNI Functions 49

5.8 Array Operations

5.8.1 KNI_GetArrayLength

5.8.2 KNI_Get<Type>ArrayElement

This family of functions consists of eight members that are listed in the table below.
Note that those functions that manipulate jfloat or jdouble data types are

TABLE 32 KNI_GetArrayLength

Function Description

Prototype jsize KNI_GetArrayLength(jarray arrayHandle);

Description Returns the number of elements in a given Java array object. The
array argument may denote an array of any element type,
including primitive types or reference types. If the given array
handle is NULL, the function returns -1.

Parameters arrayHandle: a handle pointing to an array object whose length is
to be determined.

Return Values Returns the number of elements in the array, or -1 if the given array
handle is NULL.

Exceptions None.

TABLE 33 KNI_Get<Type>ArrayElement

Function Description

Prototype <NativeType>
KNI_Get<Type>ArrayElement(<ArrayType>
arrayHandle, jint index);

Description Returns an element of an array of <Type> type. The given
array reference must not be NULL. No array type checking or
index range checking is performed.

Parameters arrayHandle: a handle pointing to an array object.
index: the index of the element in the array. Index 0 denotes
the first element in the array.

Return Values Returns the element at position index of an array of <Type>
type.

Exceptions None.

50 K Native Interface (KNI) • December, 2002

assumed to be available only if the underlying virtual machine or J2ME
configuration supports floating point data types.

TABLE 34 KNI_Get<Type>ArrayElement Functions

KNI_Get<Type>ArrayELement <ArrayType> <NativeType>

KNI_GetBooleanArrayElement jbooleanArray jboolean

KNI_GetByteArrayElement jbyteArray jbyte

KNI_GetCharArrayElement jcharArray jchar

KNI_GetShortArrayElement jshortArray jshort

KNI_GetIntArrayElement jintArray jint

KNI_GetLongArrayElement jlongArray jlong

KNI_GetFloatArrayElement jfloatArray jfloat

KNI_GetDoubleArrayElement jdoubleArray jdouble

Chapter 5 KNI Functions 51

5.8.3 KNI_Set<Type>ArrayElement

This family of functions consists of eight members that are listed in the table below.
Note that those functions that manipulate jfloat or jdouble data types are
assumed to be available only if the underlying virtual machine or J2ME
configuration supports floating point data types.

TABLE 35 KNI_Set<Type>ArrayElement

Function Description

Prototype void KNI_Set<Type>ArrayElement(<ArrayType>
arrayHandle, jint index, <NativeType> value);

Description Sets an element of an array of <Type> type. The given array
handle must not be NULL. No array type checking or index
range checking is performed.

Parameters arrayHandle: a handle pointing to an array object.
index: the index of the element in the array. Index 0 denotes
the first element in the array.
value: the value that will be stored in the array.

Return Values void.

Exceptions None.

TABLE 36 KNI_Set<Type>ArrayElement Functions

KNI_Set<Type>ArrayElement <ArrayType> <NativeType>

KNI_SetBooleanArrayElement jbooleanArray jboolean

KNI_SetByteArrayElement jbyteArray jbyte

KNI_SetCharArrayElement jcharArray jchar

KNI_SetShortArrayElement jshortArray jshort

KNI_SetIntArrayElement jintArray jint

KNI_SetLongArrayElement jlongArray jlong

KNI_SetFloatArrayElement jfloatArray jfloat

KNI_SetDoubleArrayElement jdoubleArray jdouble

52 K Native Interface (KNI) • December, 2002

5.8.4 KNI_GetObjectArrayElement

5.8.5 KNI_SetObjectArrayElement

TABLE 37 KNI_GetObjectArrayElement

Function Description

Prototype void KNI_GetObjectArrayElement(jobjectArray
arrayHandle, jint index, jobject toHandle);

Description Returns an element of an array of a reference type. The given
array handle must not be NULL. No array type checking or
index range checking is performed.

Parameters arrayHandle: a handle pointing to an array object.
index: the index of the element in the array. Index 0 denotes
the first element in the array.
toHandle: a handle to which the return value will be
assigned.

Return Values Returns nothing directly, but handle toHandle will contain
the return value.

Exceptions None.

TABLE 38 KNI_SetObjectArrayElement

Function Description

Prototype void KNI_SetObjectArrayElement(jobjectArray
arrayHandle, jint index, jobject fromHandle);

Description Sets an element of an array of a reference type. The given
array handle must not be NULL. No array type checking or
index range checking is performed.

Parameters arrayHandle: a handle pointing to an array object.
index: the index of the element in the array. Index 0 denotes
the first element in the array.
fromHandle: a handle from which value will be read.

Return Values void.

Exceptions None.

Chapter 5 KNI Functions 53

5.8.6 KNI_GetRawArrayRegion

5.8.7 KNI_SetRawArrayRegion

TABLE 39 KNI_GetRawArrayRegion

Function Description

Prototype void KNI_GetRawArrayRegion(jarray arrayHandle,
jsize offset, jsize n, jbyte* dstBuffer);

Description Gets a region of n bytes of an array of a primitive type. The
given array handle must not be NULL. No array type
checking or range checking is performed.

Parameters arrayHandle: a handle initialized with the array reference.
offset: a byte offset within the array.
n: the number of bytes of raw data to get.
dstBuffer: the destination of the data as bytes.

Return Values void.

Exceptions None.

TABLE 40 KNI_SetRawArrayRegion

Function Description

Prototype void KNI_SetRawArrayRegion(jarray arrayHandle,
jsize offset, jsize n, const jbyte* srcBuffer);

Description Sets a region of n bytes of an array of a primitive type. The
given array handle must not be NULL. No array type
checking or range checking is performed.

Parameters arrayHandle: a handle initialized with the array reference.
offset: a byte offset within the array.
n: the number of bytes of raw data to change.
srcBuffer: the source of the data as bytes.

Return Values void.

Exceptions None.

54 K Native Interface (KNI) • December, 2002

5.9 Parameter (Operand Stack) Access
KNI introduces a new set of functions for reading the parameters (local variables)
that a Java method has passed on to a native method, as well as a set of functions
for returning values back from native methods to Java methods. These functions
are typically used in conjunction of the handle operations introduced in
Section 5.10 “Handle Operations.”

5.9.1 KNI_GetParameterAs<Type>

Note – It is important to note that parameters of type long or double take up two
entries on the operand stack. For example, when calling the following function

 native void foo(int a, long b, int c);

the index of parameter ‘a’ would be 1, index of parameter ‘b’ would be 2, and
index of parameter ‘c’ would 4.

TABLE 41 KNI_GetParameterAs<Type>

Function Description

Prototype <ReturnType> KNI_GetParameterAs<Type>(jint index);

Description Returns the value of a parameter of a primitive type <Type> at
physical location specified by index. Parameter indices are
mapped from left to right. Index value 1 refers to the leftmost
parameter that has been passed on to the native method.
Remember that parameters of type long or double take up two
entries on the operand stack. No type checking or index range
checking is performed.

Parameters index: the index of a parameter of a primitive type to the native
method. Index value 1 refers to the leftmost parameter in the Java
method.

Return Values Returns the argument of a primitive type at position index in the
list of arguments to the native method.

Exceptions None.

Chapter 5 KNI Functions 55

This family of functions consists of eight members that are listed in the table below.
Note that those functions that manipulate jfloat or jdouble data types are
assumed to be available only if the underlying virtual machine or J2ME
configuration supports floating point data types.

5.9.2 KNI_GetParameterAsObject

TABLE 42 Support for accessing a native method actual parameters

KNI_GetParameterAs<Type> <Type> <ReturnType>

KNI_GetParameterAsBoolean Boolean jboolean

KNI_GetParameterAsByte Byte jbyte

KNI_GetParameterAsChar Char jchar

KNI_GetParameterAsShort Short jshort

KNI_GetParameterAsInt Int jint

KNI_GetParameterAsLong Long jlong

KNI_GetParameterAsFloat Float jfloat

KNI_GetParameterAsDouble Double jdouble

TABLE 43 KNI_GetParameterAsObject

Function Description

Prototype void KNI_GetParameterAsObject(jint index, jobject
toHandle);

Description Reads the value (object reference) of the parameter specified by
index, and stores it in the handle toHandle. Parameter indices
are mapped from left to right. Index value 1 refers to the leftmost
parameter that has been passed on to the native method. No type
checking or index range checking is performed.

Parameters index: the index of a parameter of a reference type to the native
method. Index value 1 refers to the leftmost parameter in the Java
method.
toHandle: a handle to to which the return value will be assigned.

Return Values Returns nothing directly, but handle toHandle will contain the
return value.

Exceptions None.

56 K Native Interface (KNI) • December, 2002

5.9.3 KNI_GetThisPointer

Note – The function KNI_GetThisPointer should only be used only inside
instance (non-static) native methods. The return value of this function is
unspecified if the function is called from a static native method.

TABLE 44 KNI_GetThisPointer

Function Description

Prototype void KNI_GetThisPointer(jobject toHandle);

Description Reads the value of the ‘this’ pointer in the current stack frame of
an instance (non-static) native method, and stores the value in the
handle toHandle.

Parameters toHandle: a handle to contain the ‘this’ pointer.

Return Values Returns nothing directly, but handle toHandle will contain the
return value. The return value is unspecified if this method is
called inside a static native method.

Exceptions None.

Chapter 5 KNI Functions 57

5.9.4 KNI_GetClassPointer

5.9.5 KNI_ReturnVoid

Note – IMPORTANT: The KNI_ReturnVoid function MUST BE CALLED at the
end of a native function when a native function function does not want to return a
value back to the calling Java function. Otherwise the operand stack of the Java
virtual machine may become corrupted.

TABLE 45 KNI_GetClassPointer

Function Description

Prototype void KNI_GetClassPointer(jclass toHandle);

Description Reads the value of the class pointer in the current stack frame of a
static native method, and stores the value in the handle toHandle.

Parameters toHandle: a handle to contain the class pointer.

Return Values Returns nothing directly, but handle toHandle will contain the
return value.

Exceptions None.

TABLE 46 KNI_ReturnVoid

Function Description

Prototype void KNI_ReturnVoid();

Description Returns a void value from a native function. Calling this function
terminates the execution of the native function immediately.

Parameters None.

Return Values None

Exceptions None.

58 K Native Interface (KNI) • December, 2002

5.9.6 KNI_Return<Type>

Note – The semantics of the KNI_Return<Type> functions are similar to the
standard C/C++ return statement. The execution of the function is terminated
immediately, and the control is returned back to the caller.

This family of functions consists of eight members that are listed in the table below.
Note that those functions that manipulate jfloat or jdouble data types are
assumed to be available only if the underlying virtual machine or J2ME
configuration supports floating point data types.

TABLE 47 KNI_Return<Type>

Function Description

Prototype void KNI_Return<Type>(<NativeType> value);

Description Returns a primitive value from a native function. Calling any of
the KNI_Return<Type> functions will terminate the execution of
the native function immediately.

Parameters value: the result value of the native method.

Return Values Returns a primitive value back to the function that called the
native function containing the KNI_Return<Type> call.

Exceptions None.

TABLE 48 Support for setting a native result value

KNI_Return<Type> <Type> <NativeType>

KNI_ReturnBoolean Boolean jboolean

KNI_ReturnByte Byte jbyte

KNI_ReturnChar Char jchar

KNI_ReturnShort Short jshort

KNI_ReturnInt Int jint

KNI_ReturnLong Long jlong

KNI_ReturnFloat Float jfloat

KNI_ReturnDouble Double jdouble

Chapter 5 KNI Functions 59

5.10 Handle Operations
To avoid garbage collection problems , all the object references used by KNI are
handles to objects rather than direct object references. Many KNI functions (such as
KNI_GetParameterAsObject and KNI_GetObjectField) use object handles as
input or output parameters. It is the programmer’s responsibility to allocate,
declare and unallocate the handles that are needed inside a native function.

Seven handle functions are provided, as listed below.

Note – It is important to notice that the implementation of KNI handle operations
may vary significantly from one virtual machine to another. The native function
programmer should not assume anything about the internal structure or behavior
of the handles. In order to write portable code, the programmer must only use the
public KNI handle operations defined below.

5.10.1 KNI_StartHandles

Note – Every call to KNI_StartHandles must be matched with a corresponding
KNI_EndHandles or KNI_EndHandlesAndReturnObject call. Nested
KNI_StartHandles and KNI_EndHandles /
KNI_EndHandlesAndReturnObject calls are not allowed inside the same C/C++
code block ({ ... }).

TABLE 49 KNI_StartHandles

Function Description

Prototype void KNI_StartHandles(n)

Description Allocates enough space for n handles for the current native
method.

Parameters n: a positive integer specifying the number of handles to allocate.

Return Values Nothing directly, but allocates space for a number of handles in an
implementation-dependent fashion.

Exceptions None.

60 K Native Interface (KNI) • December, 2002

5.10.2 KNI_DeclareHandle

5.10.3 KNI_IsNullHandle

TABLE 50 KNI_DeclareHandle

Function Description

Prototype void KNI_DeclareHandle(handle)

Description Declares a handle that can be used as an input, output, or in/out
parameter to an appropriate KNI function. The initial value of the
handle is unspecified. If the programmer has not allocated enough
space for the handle in the preceding call to KNI_StartHandles,
the behavior of this function is unspecified.

Parameters handle: the name by which the handle will be identified between
the calls to KNI_StartHandles and KNI_EndHandles /
KNI_EndHandlesAndReturnObject.

Return Values Nothing directly, but declares a handle in an implementation-
dependent fashion.

Exceptions None.

TABLE 51 KNI_IsNullHandle

Function Description

Prototype jboolean KNI_IsNullHandle(handle)

Description Checks if the given handle is NULL.

Parameters handle: the handle whose contents will be examined.

Return Values KNI_TRUE if the handle is NULL, KNI_FALSE otherwise.

Exceptions None.

Chapter 5 KNI Functions 61

5.10.4 KNI_IsSameObject

5.10.5 KNI_ReleaseHandle

TABLE 52 KNI_IsSameObject

Function Description

Prototype jboolean KNI_IsSameObject(handle1, handle2)

Description Checks if the given two handles refer to the same object. No
parameter type checking is performed.

Parameters handle1: a handle pointing to an object.
handle2: a handle pointing to an object.

Return Values KNI_TRUE if the handles refer to the same object, KNI_FALSE
otherwise.

Exceptions None.

TABLE 53 KNI_ReleaseHandle

Function Description

Prototype void KNI_ReleaseHandle(handle)

Description Sets the value of the given handle to NULL.

Parameters handle: the handle whose value will be set to NULL.

Return Values None.

Exceptions None.

62 K Native Interface (KNI) • December, 2002

5.10.6 KNI_EndHandles

Note – Every call to KNI_StartHandles must be matched with a corresponding
KNI_EndHandles or KNI_EndHandlesAndReturnObject call. Nested
KNI_StartHandles and KNI_EndHandles/KNI_EndHandlesAndReturnObject calls
are not allowed inside the same C/C++ code block ({ ... }).

5.10.7 KNI_EndHandlesAndReturnObject

TABLE 54 KNI_EndHandles

Function Description

Prototype void KNI_EndHandles()

Description Undeclares and unallocates the handles defined after the
preceding KNI_StartHandles call.

Parameters None.

Return Values None.

Exceptions None.

TABLE 55 KNI_EndHandlesAndReturnObject

Function Description

Prototype void KNI_EndHandlesAndReturnObject(jobject
objectHandle);

Description Undeclares and unallocates the handles defined after the
preceding KNI_StartHandles call. At the same time, this
function will terminate the execution of the native function
immediately and return an object reference back to the caller.

Parameters objectHandle: the handle from which the result value will be
read.

Return Values Returns an object value back to the function that called the native
function containing the KNI_EndHandlesAndReturnObject call.

Exceptions None.

63

CHAPTER 6

KNI Programming Overview

6.1 The ‘kni.h’ Include File
As mentioned earlier in Chapter 2, one of the key goals of the KNI is to isolate the
native function programmer from the implementation details of the virtual
machine. Consequently, the KNI programmer should never include any VM-
specific files into the files that implement native functions.

The file ‘kni.h’ is a C header file that provides the declarations and definitions of
all the data types exported by KNI as well as the prototypes of all the functions
exported by KNI. When implementing native methods using KNI, this header file
must always be included

6.2 Sample KNI Application
This section shows a simple example that illustrates the use of KNI. We write a
small Java class that calls a native (C) input/output function to print a message to
standard output. We highlight the necessary steps that are required when writing
new native functions. More comprehensive examples illustrating the use of KNI are
provided in Chapter 7.

6.2.1 Java Code
Below is a small Java application that defines a class named HelloWorld
contained in a package called mypackage.

package mypackage;

public class HelloWorld {

64 K Native Interface (KNI) • December, 2002

 public native void sayHello();
 public static void main(String[] args) {
 new HelloWorld().sayHello();
 }
}

The HelloWorld class definition contains two method declarations: a native
method called sayHello and a Java method called main. When the application is
run, the main method creates an instance of the HelloWorld class and invokes the
native method sayHello for this instance.

In this example, the native method sayHello is implemented in a separate C
programming language source file illustrated in the next subsection.

6.2.2 The Corresponding Native Code
The function that implements the native method sayHello must follow the
function prototype definition specified in the header file that would be generated
on invocation of javah on the mypackage.HelloWorld file. In this case, since the
HelloWorld application is contained in a package called mypackage, the name of
the native function must be as follows:

 void Java_mypackage_HelloWorld_sayHello()

The mypackage.HelloWorld.sayHello method is implemented in a C source
file ’Java_mypackage_HelloWorld.c’ as follows:

#include <kni.h>
#include <stdio.h>

KNIEXPORT KNI_RETURNTYPE_VOID Java_mypackage_HelloWorld_sayHello()
{

 char* message = "hello, world!";
 fprintf(stdout, "%s\n", message);
 KNI_ReturnVoid();
}

In this case, the implementation of the native function is very simple. It uses the
standard C input/output function fprintf to display the message “hello, world!”.

The C source file includes three header files:

■ kni.h – This C header file provides the declarations and definitions of all the
data types exported by KNI as well as the prototypes of all the functions
exported by KNI. When implementing native methods, this C header file must
always be included.

■ stdio.h – The code snippet above includes stdio.h because it uses the
standard C input/output function fprintf.

Chapter 6 KNI Programming Overview 65

6.2.3 Compiling and Running the Sample Application
in the KVM

Note – The information provided in this subsection is KVM-specific and not part
of the KNI Specification. Implementation details for other Java virtual machines
supporting the K Native Interface may be entirely different.

Below is a summary of the steps to run the sample KNI application in the KVM:

1. Create the Java class source file HelloWorld.java shown above. In the
simplest case, the Java class source file should reside in ‘${KVM_ROOT}/api/
src/mypackage/HelloWorld.java‘ so that the JavaCodeCompact tool can
find, compile and romize the class automatically as part of the build process.

2. Create a C source file Java_mypackage_HelloWorld.c that implements the
native method defined above. In this example, the C source file will reside in
‘${KVM_ROOT}/kvm/VmUnix/src/Java_mypackage_HelloWorld.c‘.

3. Now that the native method has been implemented, we need to rebuild the
KVM runtime interpreter and update its native function table (e.g.,
${KVM_ROOT}/tools/jcc/nativeFunctionTableUnix.c); this latter step is
performed by JavaCodeCompact. Rebuild the KVM system by compiling it with
the following compilation option:

 gnumake USE_KNI=true

4. Run the Java class bytecode file HelloWorld.class with the new KVM
interpreter. On a Solaris system and from the top of the current release of the
CLDC directory hierarchy, we would invoke the KVM interpreter as follows:

 ${KVM_ROOT}/kvm/VmUnix/build/kvm -classpath
 ${KVM_ROOT}/api/classes mypackage.HelloWorld

You should see the following displayed on the standard output:

hello, world!

The high-level process for implementing native methods is illustrated below in
FIGURE 2.

66 K Native Interface (KNI) • December, 2002

FIGURE 2 Steps involved in implementing native methods

1. Create classes that
declare native methods.

2. Implement
native methods.

3. Add native methods
to VM native function
table (VM-dependent).

4. Rebuild the virtual
machine from source
code.

67

CHAPTER 7

Examples

This chapter contains simple examples that illustrate the use of the K Native
Interface.

7.1 Parameter Passing
Consider the following Java class that illustrates parameter passing from a Java
program to a set of native methods:

package mypackage;

public class ParameterPassing {
 private native void passOne(int i1);
 private native void passTwo(int i1, int i2);
 private native void passThree(int i1, int i2, int i3);

 public static void main(String[] args) {
 ParameterPassing p = new ParameterPassing();
 p.passOne(2);
 p.passTwo(2, 4);
 p.passThree(2, 4, 8);
 }
}

Below is the corresponding C programming language implementation of the native
methods declared above:
#include <kni.h>
#include <stdio.h>

KNIEXPORT KNI_RETURNTYPE_VOID
Java_mypackage_ParameterPassing_passOne() {

 jint i1 = KNI_GetParameterAsInt(1);
 fprintf(stdout, “Parameter(s) passed: %ld\n”, i1);
 KNI_ReturnVoid();
}

68 K Native Interface (KNI) • December, 2002

KNIEXPORT KNI_RETURNTYPE_VOID
Java_mypackage_ParameterPassing_passTwo() {

 jint i1 = KNI_GetParameterAsInt(1);
 jint i2 = KNI_GetParameterAsInt(2)
 fprintf(stdout, “Parameter(s) passed: %ld, %ld\n”, i1, i2);
 KNI_ReturnVoid();
}
KNIEXPORT KNI_RETURNTYPE_VOID

Java_mypackage_ParameterPassing_passThree() {
 jint i1 = KNI_GetParameterAsInt(1);
 jint i2 = KNI_GetParameterAsInt(2);
 jint i3 = KNI_GetParameterAsInt(3);
 fprintf(stdout, “Parameter(s) passed: %ld, %ld, %ld\n”,
 i1, i2, i3);
 KNI_ReturnVoid();
}

In general, methods parameters of a primitive type can be accessed in native code
by calling the appropriate KNI_GetParameterAs<Type>(jint index) function
with index starting at one (1). Parameters are mapped from left to right, i.e.,
index value 1 always refers to the leftmost parameter that has been passed on
from the Java method to the native method. It is important to remember that long
and double parameters occupy two entries in the operand stack.

Accessing the ‘this’ pointer in instance methods. In instance native methods (non-
static native methods), the reference to the current instance (the value of the ‘this’
pointer) can be obtained by calling function
KNI_GetThisPointer(thisHandle), where thisHandle is a handle
declared in the context of the current native method. Handle
thisHandle will contain the value of the ‘this’ pointer after calling this
function.

Note – The ‘this’ pointer is not available in static native methods. The return
value of the KNI_GetThisPointer function is unspecified for static native
methods.

Accessing the class pointer in static methods. In static methods, the class pointer
can be obtained by calling function KNI_GetClassPointer(classHandle),
where classHandle is a handle declared in the context of the current native
method. Handle classHandle will contain the value of the class pointer after
calling this function.

Note – If you need to access the class pointer in an instance (non-static) method, it
is recommended that you do this by calling KNI_GetThisPointer first to obtain
a handle to an object pointer, and then calling KNI_GetObjectClass.

Chapter 7 Examples 69

7.2 Returning Values from Native
Functions
Every KNI function MUST call one of the KNI_ReturnVoid, KNI_Return<Type>
or KNI_EndHandlesAndReturnObject functions.

Even when a native function does not want to return any value back to the calling
Java function, function KNI_ReturnVoid must be called, or otherwise the operand
stack of the Java virtual machine may become corrupted.

7.2.1 Returning Primitive Values
Below is a small native code fragment that illustrates how to return a primitive
value from a native function.

#include <kni.h>
KNIEXPORT KNI_RETURNTYPE_INT

Java_mypackage_MyClass_myNativeFunction1() {
 // Return integer 123 to the calling Java method
 KNI_ReturnInt(123);
}

7.2.2 Returning Object References
Because all the object references in KNI are handles rather than direct object
references, returning object refereces from KNI function is slightly more
complicated than returning primitive values. Below is a small native code fragment
that illustrates how to return an object reference from a native function. In this
example, we will simply return the ‘this’ pointer that is implicitly passed to every
instance (non-static) method in Java.

#include <kni.h>
KNIEXPORT KNI_RETURNTYPE_OBJECT

Java_mypackage_MyClass_myNativeFunction2() {

 KNI_StartHandles(1);
 KNI_DeclareHandle(objectHandle);

 // Read the ‘this’ pointer
 KNI_GetThisPointer(objectHandle);

 // Return the ‘this’ pointer to the calling Java method
 KNI_EndHandlesAndReturnObject(objectHandle);
}

70 K Native Interface (KNI) • December, 2002

7.2.3 Returning Null Object References
If a native function wants to return a NULL pointer back to the calling Java
function, the object handle must be set to NULL explicitly by calling
KNI_ReleaseHandle. Below is a small example.

#include <kni.h>
KNIEXPORT KNI_RETURNTYPE_OBJECT

Java_mypackage_MyClass_myNativeFunction3() {

 KNI_StartHandles(1);
 KNI_DeclareHandle(objectHandle);

 // Set the handle explicitly to NULL
 KNI_ReleaseHandle(objectHandle);

 // Return the null reference to the calling Java method
 KNI_EndHandlesAndReturnObject(objectHandle);
}

7.3 Accessing Fields
The Java programming language supports two kinds of fields. Each instance of a
class has its own copy of the instance fields of the class, whereas all instances of a
class share the static fields of the class.

7.3.1 General Procedure for Accessing Fields
Field access is a two-step process. For instance fields, you first call
KNI_GetFieldID to obtain the field ID for the given class reference, field name,
and field descriptor (refer to Section 4.3.3 “Field Descriptors” for an overview of
field descriptors):

 fid = KNI_GetFieldID(classHandle, "count", "I");

Once you have obtained the field ID, you can pass the object reference and the field ID
to the appropriate instance field access function:

 jint count = KNI_GetIntField(objectHandle, fid);

For static fields, the procedure is similar, except that a separate set of functions is
used:

1. Call KNI_GetStaticFieldID for static fields instead of KNI_GetFieldID for
instance fields. KNI_GetStaticFieldID and KNI_GetFieldID have the same
return type jfieldID.

Chapter 7 Examples 71

2. Once a static field ID has been obtained, one can pass the class reference, instead
of the object reference, to the appropriate static field access function.

 fid = KNI_GetStaticFieldID(classHandle, "staticCount", "I");
 jint staticCount = KNI_GetStaticIntField(classHandle, fid);

Remember that when you access a field of a reference type (a field that contains an
object instead of a primitive value), the object reference will be returned as a
handle. Below is a small example:

KNI_GetObjectField(objectHandle, fid, toHandle);

This function would read the instance field represented by fid, and assign the value
of that field to toHandle.

7.3.2 Accessing Instance Fields
Let us take a look at an example program that illustrates how to access instance
fields from a native method implementation.

package mypackage;

public class InstanceFieldAccess {
 private int value;

 private native void accessFieldNatively();

 public static void main(String[] args) {
 InstanceFieldAccess p = new InstanceFieldAccess();
 p.value = 100;
 p.accessFieldNatively();
 System.out.println("In Java:");
 System.out.println(" Value = " + p.value);
 }
}

The InstanceFieldAccess class defines an instance field value. The main
method creates an object of this class, sets the instance field, and then calls the
native method InstanceFieldAccess.accessFieldNatively. As we will see
shortly, the native method prints to the standard output the value of the instance
field.

Below is the implementation of the native method
mypackage.InstanceFieldAccess.accessFieldNatively.

#include <kni.h>
#include <stdio.h>

KNIEXPORT KNI_RETURNTYPE_VOID
Java_mypackage_InstanceFieldAccess_accessFieldNatively() {

72 K Native Interface (KNI) • December, 2002

 /* Declare handles */
 KNI_StartHandles(2);
 KNI_DeclareHandle(objectHandle);
 KNI_DeclareHandle(classHandle);

 /* Get ‘this’ pointer */
 KNI_GetThisPointer(objectHandle);

 /* Get instance’s class */
 KNI_GetObjectClass(objectHandle, classHandle);

 /* Get field id and value */
 jfieldID fid = KNI_GetFieldID(classHandle, "value", "I");
 jint value = KNI_GetIntField(objectHandle, fid);

 /* Print field value */
 fprintf(stdout, "In C:\n Value = %ld\n", value);

 KNI_EndHandles();
 KNI_ReturnVoid();
}

Interpreting the InstanceFieldAccess class with the KVM runtime interpreter
produces the following output:

In C:

 Value = 100

In Java:

 Value = 100

7.3.3 Accessing Static Fields
Accessing static fields is similar to accessing instance fields. Let us take a look at a
minor variation of the InstanceFieldAccess example:

package mypackage;

public class StaticFieldAccess {
 private static int value;

 private native void accessFieldNatively();

 public static void main(String[] args) {
 StaticFieldAccess p = new StaticFieldAccess();
 value = 100;
 p.accessFieldNatively();
 System.out.println("In Java: ");
 System.out.println(" Value = " + value);
 }

Chapter 7 Examples 73

}

The StaticFieldAccess class defines a static integer field value. The
StaticFieldAccess.main method creates an object, initializes the static field,
and then calls the native method StaticFieldAccess.accessFieldNatively.
The native method prints to the standard output the value of the static field and
then sets the field to a new value. To verify that the field has indeed changed, the
program prints the static field value again after the native method returns.

Below is the implementation of the native method
StaticFieldAccess.accessFieldNatively.

#include <kni.h>
#include <stdio.h>

KNIEXPORT KNI_RETURNTYPE_VOID
Java_mypackage_StaticFieldAccess_accessFieldNatively() {

 /* Declare handle */
 KNI_StartHandles(1);
 KNI_DeclareHandle(classHandle);

 /* Get class pointer */
 KNI_GetClassPointer(classHandle);

 /* Get “I” “value” field id and its value */
 jfieldID fid = KNI_GetStaticFieldID(classHandle, "value", "I");
 jint value = KNI_GetStaticIntField(classHandle, fid);

 /* Print “I” “value” field */
 fprintf(stdout, "In C:\n Value = %ld\n", value);

 /* Change “I” “value” field */
 KNI_SetStaticIntField(classHandle, fid, 200);

 KNI_EndHandles();
 KNI_ReturnVoid();
}

Interpreting the StaticFieldAccess class with the KVM runtime interpreter
produces the following output:

In C:

 Value = 100

In Java:

 Value = 200

74 K Native Interface (KNI) • December, 2002

7.4 Accessing Arrays
The KNI provides access to arrays of a primitive or reference type. For example, in
the following code segment written in the The Java Programming Language1:

 int[] iarr;
 float[] farr;
 int[][] aiarr

iarr and farr are primitive arrays while aiarr is an array of a reference type.

Accessing arrays of a primitive type in a native method requires use of the family
of KNI_Get/Set<Type>ArrayElement where <Type> is any one of the primitive
types.

Let us look at a simple example. The main method of the following Java class calls
a native method sumArrayNatively that adds up the contents of an int array.

package mypackage;

public class SumIntArray {
 private native int sumArrayNatively(int[] arr);
 public static void main(String[] args) {
 SumIntArray p = new SumIntArray();
 int arr[] = new int[10];
 for (int i = 0; i < 10; i++) {
 arr[i] = i;
 }
 int sum = p.sumArrayNatively(arr);
 System.out.println(“sum: “ + sum);
 }
}

The corresponding native C programming language code is shown below.

#include <kni.h>
#include <stdio.h>

KNIEXPORT KNI_RETURNTYPE_INT
Java_mypackage_SumIntArray_sumArrayNatively() {

 jint i, sum = 0;

 /* Declare handle */
 KNI_StartHandles(1);
 KNI_DeclareHandle(arrayHandle);

1. The Java™ Programming Language (Java Series), Second Edition by Ken Arnold and James Gosling (Addison-
Wesley, 1998)

Chapter 7 Examples 75

 /* Read parameter #1 to arrayHandle */
 KNI_GetParameterAsObject(1, arrayHandle);

 /* Sum int array components */
 for (i = 0; i < 10; i++) {
 sum += KNI_GetIntArrayElement(arrayHandle, i);
 }

 /* Set result sum */
 KNI_EndHandles();
 KNI_ReturnInt(sum);
}

Remember that in KNI, arrays are represented by the jarray reference type and its
“subtypes” such as jintArray. Just as a jstring is not a C string type, neither is
jarray a C array type. One cannot implement the Java_IntArray_sumArray
native method by indirecting through a jarray reference. Instead, one must use
the proper KNI_Get<Type>ArrayElement or KNI_Set<Type>ArrayElement
functions to access the array elements.

7.5 Accessing Strings
Below is a small sample program that illustrates string access using KNI.

package mypackage;

public class StringAccess {

 private native void accessStringNatively();

 public static void main(String[] args) {
 StringAccess p = new StringAccess();
 p.accessStringNatively(“Parameter”);
 }
}

The corresponding native code is below.

#include <kni.h>
#include <stdio.h>

KNIEXPORT KNI_RETURNTYPE_VOID
Java_mypackage_StringAccess_accessStringNatively() {

 /* Allocate static buffer for the Unicode string */
 jchar buffer[256];
 jsize size;
 int i;

76 K Native Interface (KNI) • December, 2002

 /* Declare handle */
 KNI_StartHandles(1);
 KNI_DeclareHandle(stringHandle);

 /* Read parameter #1 to stringHandle */
 KNI_GetParameterAsObject(1, stringHandle);

 /* Get the length of the string */
 size = KNI_GetStringLength(stringHandle);

 /* Copy the Java string to our own buffer (as Unicode) */
 KNI_GetStringRegion(stringHandle, 0, size, buffer);

 /* Print the Unicode characters as 8-bit chars */
 for (int i = 0; i < length; i++) {
 fprintf(stdout, "%c", (char)buffer[i]);
 }

 KNI_EndHandles();
 KNI_ReturnVoid();
}

Note – IMPORTANT: Remember that function KNI_GetStringRegion returns a
Unicode string. This means that each returned character is 16 bits wide. It is
important to take this into account when allocating buffer space for the returned
string region.

	K Native Interface (KNI)
	Contents
	Preface
	Who Should Use This Specification
	Related Documents
	Version History

	Background
	1.1 Some History
	1.2 Why KNI?

	KNI Goals
	KNI Scope
	3.1 Version Information
	3.2 Class and Interface Operations
	3.3 Exceptions
	3.4 Object Operations
	3.5 Instance Field Access
	3.6 Static Field Access
	3.7 String Operations
	3.8 Array Operations
	3.9 Parameter (Operand Stack) Access
	3.10 Handle Operations

	KNI Data Types
	4.1 Primitive and Reference Types
	4.1.1 Primitive Types
	4.1.2 Reference Types
	4.1.3 Return Types

	4.2 Field IDs
	4.3 String Formats
	4.3.1 UTF-8 Strings
	4.3.2 Class Descriptors
	4.3.3 Field Descriptors

	4.4 Constants

	KNI Functions
	5.1 Version Information
	5.1.1 KNI_GetVersion

	5.2 Class and Interface Operations
	5.2.1 KNI_FindClass
	5.2.2 KNI_GetSuperClass
	5.2.3 KNI_IsAssignableFrom

	5.3 Exceptions
	5.3.1 KNI_ThrowNew
	5.3.2 KNI_FatalError

	5.4 Object Operations
	5.4.1 KNI_GetObjectClass
	5.4.2 KNI_IsInstanceOf

	5.5 Instance Field Access
	5.5.1 KNI_GetFieldID
	5.5.2 KNI_Get<Type>Field
	5.5.3 KNI_Set<Type>Field
	5.5.4 KNI_GetObjectField
	5.5.5 KNI_SetObjectField

	5.6 Static Field Access
	5.6.1 KNI_GetStaticFieldID
	5.6.2 KNI_GetStatic<Type>Field
	5.6.3 KNI_SetStatic<Type>Field
	5.6.4 KNI_GetStaticObjectField
	5.6.5 KNI_SetStaticObjectField

	5.7 String Operations
	5.7.1 KNI_GetStringLength
	5.7.2 KNI_GetStringRegion
	5.7.3 KNI_NewString
	5.7.4 KNI_NewStringUTF

	5.8 Array Operations
	5.8.1 KNI_GetArrayLength
	5.8.2 KNI_Get<Type>ArrayElement
	5.8.3 KNI_Set<Type>ArrayElement
	5.8.4 KNI_GetObjectArrayElement
	5.8.5 KNI_SetObjectArrayElement
	5.8.6 KNI_GetRawArrayRegion
	5.8.7 KNI_SetRawArrayRegion

	5.9 Parameter (Operand Stack) Access
	5.9.1 KNI_GetParameterAs<Type>
	5.9.2 KNI_GetParameterAsObject
	5.9.3 KNI_GetThisPointer
	5.9.4 KNI_GetClassPointer
	5.9.5 KNI_ReturnVoid
	5.9.6 KNI_Return<Type>

	5.10 Handle Operations
	5.10.1 KNI_StartHandles
	5.10.2 KNI_DeclareHandle
	5.10.3 KNI_IsNullHandle
	5.10.4 KNI_IsSameObject
	5.10.5 KNI_ReleaseHandle
	5.10.6 KNI_EndHandles
	5.10.7 KNI_EndHandlesAndReturnObject

	KNI Programming Overview
	6.1 The ‘kni.h’ Include File
	6.2 Sample KNI Application
	6.2.1 Java Code
	6.2.2 The Corresponding Native Code
	6.2.3 Compiling and Running the Sample Application in the KVM

	Examples
	7.1 Parameter Passing
	7.2 Returning Values from Native Functions
	7.2.1 Returning Primitive Values
	7.2.2 Returning Object References
	7.2.3 Returning Null Object References

	7.3 Accessing Fields
	7.3.1 General Procedure for Accessing Fields
	7.3.2 Accessing Instance Fields
	7.3.3 Accessing Static Fields

	7.4 Accessing Arrays
	7.5 Accessing Strings

