
Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, California 95054
U.S.A. 650-960-1300

KVM Debug Wire Protocol (KDWP)

Specification, Version 1.0

Java™ 2 Platform, Micro Edition

December, 2002

Please
Recycle

Copyright © 2002 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this
document. In particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed
at http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other
countries.

This document and the product to which it pertains are distributed under licenses restricting their use, copying, distribution, and
decompilation. No part of the product or of this document may be reproduced in any form by any means without prior written
authorization of Sun and its licensors, if any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Sun, Sun Microsystems, the Sun logo, Java, J2ME, and J2SE are trademarks or registered trademarks of Sun Microsystems, Inc. in
the U.S. and other countries.

The Adobe® logo is a registered trademark of Adobe Systems, Incorporated.

Federal Acquisitions: Commercial Software - Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND
WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR FOR A PARTICULAR
PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD
TO BE LEGALLY INVALID.

Copyright © 2002 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. a les droits de propriété intellectuels relatants à la technologie incorporée dans le produit qui est décrit dans
ce document. En particulier, et sans la limitation, ces droits de propriété intellectuels peuvent inclure un ou plus des brevets
américains énumérés à http://www.sun.com/patents et un ou les brevets plus supplémentaires ou les applications de brevet
en attente dans les Etats - Unis et dans les autres pays.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la
distribution, et la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, parquelque
moyen que ce soit, sans l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y ena.

Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et
licencié par des fournisseurs de Sun.

Sun, Sun Microsystems, le logo Sun, Java, J2ME, et J2SE sont des marques de fabrique ou des marques déposées de Sun
Microsystems, Inc. aux Etats-Unis et dans d’autres pays.

Le logo Adobe® est une marque déposée de Adobe Systems, Incorporated.

LA DOCUMENTATION EST FOURNIE "EN L’ÉTAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES
EXPRESSES OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y
COMPRIS NOTAMMENT TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE
UTILISATION PARTICULIERE OU A L’ABSENCE DE CONTREFAÇON.

http://www.sun.com/patents
http://www.sun.com/patents

iii

Contents

Preface vii

1. Introduction 1

1.1 Architectural Overview 2

1.2 KDWP Packets 3

1.3 Command and Reply Packet Fields 4

1.4 Protocol details 8

▼ VirtualMachine command set (1) 8

▼ ReferenceType command set (2) 8

▼ ClassType command set (3) 8

▼ ObjectReference command set (9) 8

▼ StringReference command set (10) 8

▼ ThreadReference command set (11) 9

▼ ArrayReference command set (13) 9

▼ EventRequest command set (15) 9

▼ StackFrame command set (16) 9

▼ Event Command Set (64) 9

▼ KVM Vendor Specific Command set (128) 10

2. VirtualMachine Command Set 11

▼ AllClasses Command (3) 11

▼ AllThreads Command (4) 11

▼ Suspend Command (8) 12

iv KVM Debug Wire Protocol (KDWP) • December, 2002

▼ Resume Command (9) 12

▼ Exit Command (10) 13

3. ReferenceType Command Set 15

▼ GetValues Command (6) 15

4. ClassType Command Set 17

▼ Superclass Command (1) 17

▼ SetValues Command (2) 17

5. ObjectReference Command Set 19

▼ ReferenceType Command (1) 19

▼ GetValues Command (2) 19

▼ SetValues Command (3) 20

6. StringReference Command Set 23

▼ Value Command (1) 23

7. ThreadReference Command Set 25

▼ Name Command (1) 25

▼ Suspend Command (2) 25

▼ Resume Command (3) 26

▼ Status Command (4) 26

▼ Frames Command (6) 27

▼ FrameCount Command (7) 28

▼ Stop Command (10) 28

▼ SuspendCount Command (12) 29

8. ArrayReference Command Set 31

▼ Length Command (1) 31

▼ GetValues Command (2) 31

▼ SetValues Command (3) 32

9. EventRequest Command Set 33

Contents v

▼ Set Command (1) 33

▼ Clear Command (2) 35

▼ ClearAllBreakpoints Command (3) 36

10. StackFrame Command Set 37

▼ GetValues Command (1) 37

▼ SetValues Command (2) 38

11. Event Command Set 39

▼ Composite Command (100) 39

12. Vendor Specific Command Set 43

▼ Handshake Command (1) 43

A. Constants 45

▼ ClassStatus Constants 45

▼ ThreadStatus Constants 45

▼ TypeTag Constants 46

▼ Tag Constants 46

▼ Error Constants 47

▼ EventKind Constants 49

▼ SuspendStatus Constants 49

▼ SuspendPolicy Constants 50

vi KVM Debug Wire Protocol (KDWP) • December, 2002

vii

Preface

This document, KVM Debug Wire Protocol (KDWP) Specification, defines the
debugger interface for Java Virtual Machine implementations that are intended to
be compatible with Sun’s K Virtual Machine (KVM). KVM is commonly used as the
underlying execution engine for the J2ME CLDC (Java™ 2 Micro Edition,
Connected Limited Device Configuration) standard. The KVM Debug Wire
Protocol (KDWP) is the protocol that is used for communication between a third
party Java debugging environment and the K Virtual Machine.

Who Should Use This Specification
The audience for this document includes:

1. Device manufacturers who want to port the K Virtual Machine (KVM) or
another J2ME CLDC Java Virtual Machine to their device and who want their
device to support source-level Java debugging with Integrated Development
Environments (IDEs) from third-party vendors.

2. IDE and tool vendors who wish to implement or port a Debug Agent in order to
make their development environment capable of supporting source-level
debugging of J2ME CLDC devices and applications.

Version History
September 5, 2001: Regenerated the KDWP Specification version 1.0. Fixed the
incorrect description of FieldID in TABLE 1 on page 6. No other changes.

October 11, 2002: Reformatted the KDWP Specification version 1.0 for Section 508
Accessibility. No changes in technical content of the specification.

viii KVM Debug Wire Protocol (KDWP) • December, 2002

December 5, 2002: Added ClassMatch event modifier to description of
EventRequest Command Set.

Related Literature
The Java™ Language Specification (Java Series), Second Edition by James Gosling, Bill
Joy, Guy Steele and Gilad Bracha. Addison-Wesley, 2000, ISBN 0-201-31008-2

The Java™ Virtual Machine Specification (Java Series), Second Edition by Tim Lindholm
and Frank Yellin (Addison-Wesley, 1999)

Connected, Limited Device Configuration Specification, Version 1.0, Java Community
Process, Sun Microsystems, Inc.
http://java.sun.com/aboutJava/communityprocess/jsr/
jsr_030_j2melc.html

Java 2 Platform Micro Edition (J2ME™) Technology for Creating Mobile Devices, A
White Paper, Sun Microsystems, Inc.
http://java.sun.com/products/cldc/wp/KVMwp.pdf

Acknowledgements
This document was prepared in collaboration with engineers from Motorola
Wireless Software, Applications and Services (WSAS) division in Austin, Texas.
Many thanks to Motorola for their development efforts and support. We would
also like to thank Borland, Metrowerks and Nokia for their participation and
feedback.

http://java.sun.com/aboutJava/communityprocess/jsr/
http://java.sun.com/products/cldc/wp/KVMwp.pdf

1

CHAPTER 1

Introduction

This document, KVM Debug Wire Protocol (KDWP) Specification, defines the
debugger interface for Java Virtual Machine implementations that are intended to
be compatible with Sun’s K Virtual Machine (KVM). KVM is commonly used as the
underlying execution engine for the J2ME CLDC (Java™ 2 Micro Edition,
Connected Limited Device Configuration) standard.

The KVM Debug Wire Protocol (KDWP) is the protocol that is used for
communication between a Debug Agent (DA) and a CLDC-compliant J2ME Java
Virtual Machine (usually KVM).

The high-level goal of the KDWP interface is to make it possible to plug a CLDC-
compliant Java Virtual Machine flexibly into a Java development and debugging
environment such as Forte.

The debugging interface specified in this document is intended to be compliant
with the JPDA (Java Platform Debug Architecture) specification supported by Java
2 Standard Edition (J2SE™). Further information on the JPDA architecture is
available at http://java.sun.com/products/jpda/. However, due to strict
memory constraints, KVM does not implement support for the JVMDI (Java Virtual
Machine Debug Interface) or the full JDWP (Java Debug Wire Protocol)
specifications required by JPDA. Instead, KVM implements a subset of the JDWP
known as KDWP.

The KDWP interface is derived directly from the JDWP Specification (see
http://java.sun.com/products/jpda/doc/jdwp-spec.html). Note that the
command sets are numbered the same as the JDWP command sets and the
commands in each set are numbered as per the JDWP. This allows an implementer
to support more JDWP commands directly in the KVM if deemed necessary. Like
JDWP, KDWP differs from many protocol specifications in that it only details
format and layout, not transport.

http://java.sun.com/products/jpda/
http://java.sun.com/products/jpda/doc/jdwp-spec.html

2 KVM Debug Wire Protocol (KDWP) • December, 2002

1.1 Architectural Overview
KDWP was designed to be a strict subset of the JDWP, primarily based on the
resource constraints imposed on the small devices. In order to make KVM run with
a JPDA-compatible debugger IDEs without a huge memory overhead, a Debug
Agent (also known as debug proxy) program is interposed between the KVM and the
JPDA-compatible debugger. The Debug Agent allows many of the memory-
consuming components of a JPDA-compliant debugging environment to be
processed on the development workstation instead of the KVM, therefore reducing
the memory overhead that the debugging interfaces have on the KVM and target
devices. As obvious, the debugging interfaces can be turned off completely (at
compile time) on those platforms/ports that do not need Java-level debugging
support.

At the high level, the implementation of the Java-level debugging support consists
of two parts:

■ the actual code in the Java Virtual Machine (usually KVM) to support a subset of
the JDWP, and

■ the Debug Agent that performs some of the debug commands on behalf of the
Java Virtual Machine.

The overall architecture for the Java-level debugging interface is illustrated in
Figure 1. In that figure, the topmost box represents the JPDA-compliant debugging
environment (“JPDA Debugger”) running on a development workstation. The
debugger is connected to the Debug Agent that talks to the KVM.

FIGURE 1 Java-level debugging interface architecture

JPDA Debugger

Debug Agent

KVM

Socket connection

Socket connection

Chapter 1 Introduction 3

The Debug Agent (DA) typically connects to the KVM via a socket connection.
Similarly, the debugger connects to the Debug Agent over a socket. The debugger is
unaware that it is connected to the Debug Agent. The debugger appears to be
communicating directly with a JDWP-compliant Java Virtual Machine.

The KDWP protocol is designed to facilitate efficient use by a Debug Agent. Many
of its abilities are tailored to that end. For instance, in some situations the Debug
Agent may process the commands and issue a response directly back to the
debugger without querying the Java Virtual Machine. If the command from the
debugger needs data from the Java Virtual Machine, the Debug Agent
communicates with the JVM via the KDWP to obtain the data. The completeness of
the JDWP API that the Debug Agent provides depends on which debugger the
implementer needs to support. Different debuggers may need different levels of
support. The reference implementation from Sun supports a minimum set of
commands that are needed by the Forte debugger.

1.2 KDWP Packets
The KDWP is packet based and is not stateful. There are two basic packet types:
command packets and reply packets.

Command packets may be sent by either the DA or the target VM. They are used
by the DA to request information from the target VM, or to control program
execution. Command packets are sent by the target VM to notify the DA of some
event in the target VM such as a breakpoint or exception.

A reply packet is sent only in response to a command packet and always provides
information about the success or failure of the command. Reply packets may also
carry data requested in the command (for example, the value of a field or variable).
Events sent from the target VM do not require a response packet from the DA.

The KDWP is asynchronous. Multiple command packets may be sent before the
first reply packet is received.

Command and reply packet headers are equal in size. This is to make transports
easier to implement and abstract. The layout of each packet looks like this:

Command Packet

Header

length (4 bytes)

id (4 bytes)

flags (1 byte)

command set (1 byte)

4 KVM Debug Wire Protocol (KDWP) • December, 2002

command (1 byte)

data (Variable)

Reply Packet

Header

length (4 bytes)

id (4 bytes)

flags (1 byte)

error code (2 bytes)

data (Variable)

All fields and data sent via KDWP should be in big-endian format. (See the Java™
Virtual Machine Specification for the definition of big-endian.) The first three fields
are identical in both packet types.

1.3 Command and Reply Packet Fields

Shared Header Fields

length

The length field is the size, in bytes, of the entire packet, including the
length field. The header size is 11 bytes, so a packet with no data would set
this field to 11.

id

The id field is used to uniquely identify each packet command/reply pair.
A reply packet has the same id as the command packet to which it replies.
This allows asynchronous commands and replies to be matched. The id
field must be unique among all outstanding commands sent from one
source. (Outstanding commands originating from the debugger may use
the same id as outstanding commands originating from the target VM.)
Other than that, there are no requirements on the allocation of ids.

 A simple monotonic counter is adequate for most implementations. It
allows 2^32 unique outstanding packets and is the simplest
implementation.

flags

Chapter 1 Introduction 5

Flags are used to alter how any command is queued and processed and to
tag command packets that originate from the target VM. There is currently
one flag bit defined. Future versions of the protocol may define additional
flags.

 0x80

 Reply packet

The reply bit, when set, indicates that this packet is a reply.

Command Packet Header Fields

command set

This field is useful as a means for grouping commands in a meaningful
way.

The command set space is roughly divided as follows:

0 - 63

 Sets of commands sent to the target VM.

64 - 127

 Sets of commands sent to the debugger/Debug Agent.

128 - 256

 Vendor-defined commands and extensions.

command

This field identifies a particular command in a command set. This field,
together with the command set field, is used to indicate how the command
packet should be processed. Together, these fields tell the receiver what to
do. Specific commands are presented later in this document.

Reply Packet Header Fields

error code

This field is used to indicate whether the command packet that is being
replied to was successfully processed. A value of zero indicates success. A
non-zero value indicates an error. The error code returned may be specific
to each command set/command.

Data

6 KVM Debug Wire Protocol (KDWP) • December, 2002

The data field is unique to each command set/command. It is also different
between command and reply packet pairs. For example, a command
packet that requests a field value contains references to the object and field
ids for the desired value in its data field. The reply packet's data field
contains the value of the field.

Detailed Command Information

In general, the data field of a command or reply packet is an abstraction of
a group of multiple fields that define the command or reply data. Each
subfield of a data field is encoded in big endian format (See the Java™
Virtual Machine Specification for the definition of big-endian.) The detailed
composition of data fields for each command and its reply are described in
this section.

There is a small set of common data types that are common to many of the different
KDWP commands and replies. They are described in the following table.

TABLE 1 KDWP Data Types

Name Size Description

Byte 1 byte A byte value.

Boolean 1 byte A boolean value. TRUE is encoded as a non-zero value.

Int 4 bytes A four-byte signed integer value.

Long 8 bytes An eight-byte signed integer value.

ObjectID 4 bytes Uniquely identifies an object in the target VM. A
particular object is identified by exactly one objectID
in KDWP commands and replies throughout its
lifetime. An objectID of 0 represents a null object.

ThreadID 4 bytes Uniquely identifies thread objects in the KVM

ReferenceTypeID 4 bytes Uniquely identifies a reference type in the target VM.
It should not be assumed that for a particular class,
the class ObjectID and the referenceTypeID are
the same. Class, interfaces, and primitive data types
are identified by referenceTypeIDs. Each reference
type has exactly one referenceTypeID during its
lifetime.

ArrayID 4 bytes Uniquely identifies references to arrays

MethodID 4 bytes Uniquely identifies a method in some class in the
KVM. The methodIDs for each method in a class must
be unique. Since each methodID is paired with a
referenceTypeID (which identifies the class or
interface), methodIDs do not need to be globally
unique.

Chapter 1 Introduction 7

FieldID 8 bytes Uniquely identifies a field in some class in the KVM.
The fieldIDs must be globally unique, since
referencing a field in an object may require the KVM
to access field offsets in superclasses of the current
object. The upper 4 bytes are the classID of the class
that defines this field. The lower 4 bytes identify the
field in the class.
NOTE: The description of this field was incorrect in
the earlier versions of the KDWP Specification.

FrameID 4 bytes Uniquely identifies a frame in the KVM. The frameID
must uniquely identify the frame within the entire
KVM; it must be unique across all threads.

Location 13 bytes An executable location. The location is identified by
one byte type tag followed by a a referenceTypeID
followed by a methodID followed by an unsigned
eight-byte index, which identifies the location within
the method. Index values are restricted as follows:
The index of the start location for the method is less
than all other locations in the method. The index of
the end location for the method is greater than all
other locations in the method. Index values within a
method are monotonically increasing from the first
executable point in the method to the last. For many
implementations, each byte-code instruction in the
method has its own index, but this is not required.
The type tag is necessary to identify whether
location's referenceTypeID identifies a class or an
interface. Almost all locations are within classes, but it
is possible to have executable code in the static
initializer of an interface.

Value Variable A value retrieved from the target VM. The first byte is
a signature byte which is used to identify the type. See
KDWP.Tag for the possible values of this byte.Value's
length is variable
 byte: 1-byte
 short or char: 2-bytes
 int: 4-bytes
 long: 8-bytes

Untagged value Variable A value as described above without the signature
byte. This form is used when the signature
information can be determined from context.

String Variable A UTF-8 encoded string, not zero terminated,
preceded by a four-byte integer length.

TABLE 1 KDWP Data Types

Name Size Description

8 KVM Debug Wire Protocol (KDWP) • December, 2002

1.4 Protocol details

Note – The commands in each command set are numbered to match the equivalent
JDWP (Java Debug Wire Protocol) commands. Commands that are missing from
the following list are presumed to be handled via the Debug Agent or are not
necessary for minimal debugger functionality. Implementers could extend the KVM
command set to handle more of the JDWP commands.

▼ VirtualMachine command set (1)
AllClasses (3)
AllThreads (4)
Suspend (8)
Resume (9)
Exit (10)

▼ ReferenceType command set (2)
GetValues (6)

▼ ClassType command set (3)
Superclass (1)
SetValues (2)

▼ ObjectReference command set (9)
ReferenceType (1)
GetValues (2)
SetValues (3)

▼ StringReference command set (10)
 Value (1)

Chapter 1 Introduction 9

▼ ThreadReference command set (11)
 Name (1)
 Suspend (2)
 Resume (3)
 Status (4)
 Frames (6)
 FrameCount (7)
 Stop (10)
 SuspendCount (12)

▼ ArrayReference command set (13)
Length (1)
GetValues (2)
SetValues (3)

▼ EventRequest command set (15)
Set (1)

Event types:

 Class prepare
 Breakpoint
 Midlet death

Clear (2)

ClearAllBreakpoints (3)

▼ StackFrame command set (16)
GetValues (1)
SetValues (2)

▼ Event Command Set (64)
Composite (100)

10 KVM Debug Wire Protocol (KDWP) • December, 2002

▼ KVM Vendor Specific Command set (128)
Handshake (1)

Sends handshake string to KVM.
returns a 32 bit value that describes the capabilities of the KVM.

11

CHAPTER 2

VirtualMachine Command Set

This command set is numbered (1) to match the equivalent JDWP command set.

▼ AllClasses Command (3)
Returns reference types for all classes currently loaded by the target VM.

Out Data

(None)

Reply Data

▼ AllThreads Command (4)
Returns all threads currently running in the target VM. The returned list contains
threads created through java.lang.Thread. Threads that have not yet been
started and threads that have completed their execution are not included in the
returned list.

TABLE 2 Structure of Reply Data for AllClasses Command

int classes Number of reference types that follow.

Repeated classes times:

byte refTypeTag Kind of following reference type.

referenceTypeID typeID Loaded reference type

string signature The JNI signature of the loaded reference type

int status The current class status.

12 KVM Debug Wire Protocol (KDWP) • December, 2002

Out Data

(None)

Reply Data

▼ Suspend Command (8)
Suspends the execution of the application running in the target VM. All Java
threads currently running are suspended.

Unlike java.lang.Thread.suspend, suspends of both the virtual machine and
individual threads are counted. Before a thread can run again, it must be resumed
through the VM-level suspend command or the thread-level suspend command the
same number of times it has been suspended.

Out Data

(None)

Reply Data

(None)

▼ Resume Command (9)
Resumes execution of the application after the suspend command or an event has
stopped it. Suspensions of the Virtual Machine and individual threads are counted.
If a particular thread is suspended n times, it must be resumed n times before it
can continue.

Out Data

(None)

TABLE 3 Structure of Reply Data for AllThreads Command

int threads Number of threads that follow.

Repeated threads times:

threadID thread A running thread

Chapter 2 VirtualMachine Command Set 13

Reply Data

(None)

▼ Exit Command (10)
Terminates the target VM with the given exit code. All ids previously returned
from the target VM become invalid. Threads running in the VM are abruptly
terminated. A thread death exception is not thrown and finally blocks are not run.

Out Data

Reply Data

(None)

TABLE 4 Structure of Out Data for Exit Command

int exitCode The exit code

14 KVM Debug Wire Protocol (KDWP) • December, 2002

15

CHAPTER 3

ReferenceType Command Set

This command set is numbered (2) to match the equivalent JDWP command set.

▼ GetValues Command (6)
Returns the value of one or more static fields of the reference type. Each field must
be a member of the reference type or one of its superclasses, superinterfaces, or
implemented interfaces. Access control is not enforced. For example, the values of
private fields can be obtained.

Out Data

Reply Data

TABLE 5 Structure of Out Data for GetValues Command

referenceTypeID refType The reference type ID.

int fields The number of values to get

Repeated fields times:

fieldID fieldID A field to get

TABLE 6 Structure of Reply Data for GetValues Command

int values The number of values returned

Repeated values times:

value value The field value

16 KVM Debug Wire Protocol (KDWP) • December, 2002

17

CHAPTER 4

ClassType Command Set

This command set is numbered (3) to match the equivalent JDWP command set.

▼ Superclass Command (1)
Returns the immediate superclass of a class.

Out Data

Reply Data

▼ SetValues Command (2)
Sets the value of one or more static fields. Each field must be a member of the class
type or one of its superclasses, superinterfaces, or implemented interfaces. Access
control is not enforced. For example, the values of private fields can be set. Final
fields cannot be set. For primitive values, the value's type must match the field's
type exactly. For object values, there must exist a widening reference conversion
from the value's type to the field's type and the field's type must be loaded.

TABLE 7 Structure of Out Data for Superclass Command

classID clazz The class type ID.

TABLE 8 Structure of Reply Data for Superclass Command

classID superclass The superclass (NULL if the class ID for
java.lang.Object is specified).

18 KVM Debug Wire Protocol (KDWP) • December, 2002

Out Data

Reply Data

(None)

TABLE 9 Structure of Out Data for SetValues Command

classID clazz The class type ID.

int values The number of fields to set.

Repeated values times:

fieldID fieldID Field to set.

untagged-value value Value to put in the field.

19

CHAPTER 5

ObjectReference Command Set

This command set is numbered (9) to match the equivalent JDWP command set.

▼ ReferenceType Command (1)
Returns the runtime type of the object. The runtime type is a class or an array.

Out Data

Reply Data

▼ GetValues Command (2)
Returns the value of one or more instance fields. Each field must be a member of
the object's type or one of its superclasses, superinterfaces, or implemented
interfaces. Access control is not enforced. For example, the values of private fields
can be obtained.

TABLE 10 Structure of Out Data for ReferenceType Command

objectID object The object ID

TABLE 11 Structure of Reply Data for ReferenceType Command

byte refTypeTag Kind of following reference type.

referenceTypeID typeID The runtime reference type.

20 KVM Debug Wire Protocol (KDWP) • December, 2002

Out Data

Reply Data

▼ SetValues Command (3)
Sets the value of one or more instance fields. Each field must be a member of the
object's type or one of its superclasses, superinterfaces, or implemented interfaces.
Access control is not enforced; for example, the values of private fields can be set.
For primitive values, the value's type must match the field's type exactly. For object
values, there must be a widening reference conversion from the value's type to the
field's type and the field's type must be loaded.

TABLE 12 Structure of Out Data for GetValues Command

objectID object The object ID

int fields The number of values to get

Repeated fields times:

fieldID fieldID Field to get.

TABLE 13 Structure of Reply Data for GetValues Command

int values The number of values returned

Repeated values times:

value value The field value

Chapter 5 ObjectReference Command Set 21

Out Data

Reply Data

(None)

TABLE 14 Structure of Out Data for SetValues Command

objectID object The object ID

int values The number of fields to set.

Repeated values times:

fieldID fieldID Field to set.

untagged-value value Value to put in the field.

22 KVM Debug Wire Protocol (KDWP) • December, 2002

23

CHAPTER 6

StringReference Command Set

This command set is numbered (10) to match the equivalent JDWP command set.

▼ Value Command (1)
Returns the characters contained in the string.

Out Data

Reply Data

TABLE 15 Structure of Out Data for Value Command

objectID stringObject The String object ID.

TABLE 16 Structure of Reply Data for Value Command

string stringValue The value of the String.

24 KVM Debug Wire Protocol (KDWP) • December, 2002

25

CHAPTER 7

ThreadReference Command Set

This command set is numbered (11) to match the equivalent JDWP command set.

▼ Name Command (1)
Returns the thread name.

Out Data

Reply Data

▼ Suspend Command (2)
Suspends the thread.

Unlike java.lang.Thread.suspend(), suspends of both the virtual machine
and individual threads are counted. Before a thread can run again, it must be
resumed the same number of times it has been suspended.

Suspending single threads with this command has the same dangers as is the case
with method java.lang.Thread.suspend(). If the suspended thread holds a
monitor needed by another running thread, deadlock is possible in the target VM
(at least until the suspended thread is resumed again).

TABLE 17 Structure of Out Data for Name Command

threadID threadObject The thread object ID.

TABLE 18 Structure of Reply Data for Name Command

string threadName The thread name.

26 KVM Debug Wire Protocol (KDWP) • December, 2002

The suspended thread is guaranteed to remain suspended until resumed through
one of the JDI resume methods mentioned above.

Note that this doesn't change the status of the thread (see the ThreadStatus
command.) For example, if it was Running, it still appears to other threads to be
running.

Out Data

Reply Data

(None)

▼ Resume Command (3)
Resumes the execution of a given thread. If this thread was not previously
suspended by the front-end, calling this command has no effect. Otherwise, the
count of pending suspends on this thread is decremented. If it is decremented to 0,
the thread continues to execute.

Out Data

Reply Data

(None)

▼ Status Command (4)
Returns the current status of a thread. The thread status reply indicates the thread
status the last time it was running. The suspend status provides information on the
thread's suspension, if any.

TABLE 19 Structure of Out Data for Suspend Command

threadID threadObject The thread object ID.

TABLE 20 Structure of Out Data for Resume Command

threadID threadObject The thread object ID.

Chapter 7 ThreadReference Command Set 27

Out Data

Reply Data

▼ Frames Command (6)
Returns the current call stack of a suspended thread. The sequence of frames starts
with the currently executing frame, followed by its caller, and so on. The thread
must be suspended, and the returned frameID is valid only while the thread is
suspended.

TABLE 21 Structure of Out Data for Status Command

threadID threadObject The thread object ID.

TABLE 22 Structure of Reply Data for Status Command

int threadStatus One of the thread status codes. See KDWP.ThreadStatus

int suspendStatus One of the suspend status codes. See
KDWP.SuspendStatus

28 KVM Debug Wire Protocol (KDWP) • December, 2002

Out Data

Reply Data

▼ FrameCount Command (7)
Returns the count of frames on this thread's stack. The thread must be suspended,
and the returned count is valid only while the thread is suspended.

Out Data

Reply Data

▼ Stop Command (10)
Stops the thread with an asynchronous exception, as if done by
java.lang.Thread.stop.

TABLE 23 Structure of Out Data for Frames Command

threadID threadObject The thread object ID.

int startFrame The index of the first frame to retrieve.

int length The count of frames to retrieve (-1 means all remaining).

TABLE 24 Structure of Reply Data for Frames Command

int frames number of frames retrieved

Repeated frames times:

frameID frameID The ID of this frame.

location location The current location of this frame

TABLE 25 Structure of Out Data for FrameCount Command

threadID threadObject The thread object ID.

TABLE 26 Structure of Reply Data for FrameCount Command

int frameCount The count of frames on this thread's stack.

Chapter 7 ThreadReference Command Set 29

Out Data

Reply Data

(None)

▼ SuspendCount Command (12)
Get the suspend count for this thread. The suspend count is the number of times
the thread has been suspended through the thread-level or VM-level suspend
commands without a corresponding resume.

Out Data

Reply Data

TABLE 27 Structure of Out Data for Stop Command

threadID threadObject The thread object ID.

objectID throwable Asynchronous exception. This object must be an
instance of java.lang.Throwable or a subclass

TABLE 28 Structure of Out Data for SuspendCount Command

threadID threadObject The thread object ID.

TABLE 29 Structure of Reply Data for SuspendCount Command

int suspendCount The number of outstanding suspends of this thread.

30 KVM Debug Wire Protocol (KDWP) • December, 2002

31

CHAPTER 8

ArrayReference Command Set

This command set is numbered (13) to match the equivalent JDWP command set.

▼ Length Command (1)
Returns the number of components in a given array.

Out Data

Reply Data

▼ GetValues Command (2)
Returns a range of array components. The specified range must be within the
bounds of the array.

TABLE 30 Structure of Out Data for Length Command

arrayID arrayObject The array object ID.

TABLE 31 Structure of Reply Data for Length Command

int arrayLength The length of the array.

32 KVM Debug Wire Protocol (KDWP) • December, 2002

Out Data

Reply Data

▼ SetValues Command (3)
Sets a range of array components. The specified range must be within the bounds
of the array. For primitive values, each value's type must match the array
component type exactly. For object values, there must be a widening reference
conversion from the value's type to the array component type and the array
component type must be loaded.

Out Data

Reply Data

(None)

TABLE 32 Structure of Out Data for GetValues Command

arrayID arrayObject The array object ID.

int firstIndex The first index to retrieve.

int length The number of components to retrieve. If length
== -1, retrieve all components of the array.

TABLE 33 Structure of Reply Data for GetValues Command

byte Type tag The type of the components of the array

Int Length The number of components being returned.

Values Values Type tagged KDWP. Tag values of each
component being returned.

TABLE 34 Structure of Out Data for SetValues Command

arrayID arrayObject The array object ID.

int firstIndex The first index to set.

int values The number of values to set.

Repeated values times:

untagged-value value A value to set.

33

CHAPTER 9

EventRequest Command Set

This command set is numbered (15) to match the equivalent JDWP command set.

▼ Set Command (1)
Set an event request. When the event described by this request occurs, an event is
sent from the target VM.

34 KVM Debug Wire Protocol (KDWP) • December, 2002

Out Data

TABLE 35 Structure of Out Data for Set Command

byte eventKind Event kind to request. See KDWP.EventKind
for a complete list of events that can be
requested. The default is to support only
Breakpoint, Class_Prepare and
Midlet_Death events.

byte suspendPolicy What threads are suspended when this event
occurs? Note that the order of events and
command replies accurately reflects the order
in which threads are suspended and resumed.
For example, if a VM-wide resume is
processed before an event occurs which
suspends the VM, the reply to the resume
command is written to the transport before the
suspending event. Refer to SuspendPolicy
Constants in the Appendix.

int modifiers Constraints used to control the number of
generated events. Modifiers specify additional
tests that an event must satisfy before it is
placed in the event queue. Events are filtered
by applying each modifier to an event in the
order they are specified in this collection Only
events that satisfy all modifiers are reported.
Filtering can improve debugger performance
dramatically by reducing the amount of event
traffic sent from the target VM to the debugger
VM.

Repeated modifiers times:

byte modKind Modifier kind

Case ClassOnly - if modKind is 4: For class prepare events, restricts the
events generated by this request to be the
preparation of the given reference type and
any subtypes. For other events, restricts the
events generated by this request to those
whose location is in the given reference type or
any of its subtypes. An event is generated for
any location in a reference type that can be
safely cast to the given reference type. This
modifier can be used with any event kind
except class unload, thread start, and
thread end.

referenceTypeID clazz Required class

Chapter 9 EventRequest Command Set 35

Reply Data

▼ Clear Command (2)
Clear an event request.

Out Data

Reply Data

(None)

Case ClassMatch - if modKind is 5: Restricts reported events to those for classes
whose name matches the given restricted
regular expression. For class prepare events,
the prepared class name is matched. For class
unload events, the unloaded class name is
matched. For other events, the class name of
the event’s location is matched. This modifier
can be used with any event kind except thread
start and thread end.

string classPattern Matches are limited to exact matches of the
given class pattern and matches of patterns
that begin or end with “*”; for example,
“*.Foo”or “java.*”.

Case LocationOnly - if modKind is 7: Restricts reported events to those that occur at
the given location. This modifier can be used
with breakpoint, field access, field
modification, step, and exception event
kinds.

location loc Required location

TABLE 36 Structure of Reply Data for Set Command

int requestID ID of created request

TABLE 37 Structure of Out Data for Clear Command

byte event Event type to clear

int requestID ID of request to clear

TABLE 35 Structure of Out Data for Set Command

36 KVM Debug Wire Protocol (KDWP) • December, 2002

▼ ClearAllBreakpoints Command (3)
Remove all set breakpoints.

If bit 14 in the handshake is set, which means that the KVM stores event
information, then the ClearAllBreakpoints command should be supported.
Otherwise it is not supported.

Out Data

(None)

Reply Data

(None)

37

CHAPTER 10

StackFrame Command Set

This command set is numbered (16) to match the equivalent JDWP command set.

▼ GetValues Command (1)
Returns the value of one or more local variables in a given frame. Each variable
must be visible at the current frame code index. Even if local variable information
is not available, values can be retrieved if the front-end is able to determine the
correct local variable index. (Typically, this index can be determined for method
arguments from the method signature without access to the local variable table
information.)

Out Data

TABLE 38 Structure of Out Data for GetValues Command

threadID threadObject The frame's thread.

frameID frame The frame ID.

int slots The number of values to get.

Repeated slots times:

int slot The local variable's index in the frame.

byte sigbyte A tag identifying the type of the variable

38 KVM Debug Wire Protocol (KDWP) • December, 2002

Reply Data

▼ SetValues Command (2)
Sets the value of one or more local variables. Each variable must be visible at the
current frame code index. For primitive values, the value's type must match the
variable's type exactly. For object values, there must be a widening reference
conversion from the value's type to the variable's type and the variable's type must
be loaded.

Even if local variable information is not available, values can be set, if the front-end
is able to determine the correct local variable index. (Typically, this index can be
determined for method arguments from the method signature without access to the
local variable table information.)

Out Data

Reply Data

(None)

TABLE 39 Structure of Reply Data for GetValues Command

int values The number of values retrieved.

Repeated values times:

value slotValue The value of the local variable.

TABLE 40 Structure of Out Data for SetValues Command

threadID threadObject The frame's thread.

frameID frame The frame ID.

int slotValues The number of values to set.

Repeated slotValues times:

int slot The slot ID.

value slotValue The value to set.

39

CHAPTER 11

Event Command Set

This command set is numbered (64) to match the equivalent JDWP command set.
Note that by default, KDWP supports only Breakpoint, Class_Prepare and
Midlet_Death events.

▼ Composite Command (100)
Several events may occur at a given time in the target VM. For example, there
might be more than one breakpoint request for a given location, or you might
single step to the same location as a breakpoint request. These events are delivered
together as a composite event. For uniformity, a composite event is always used to
deliver events, even if there is only one event to report.

The events that are grouped in a composite event are restricted in the following
ways:

■ Only with other class prepare events for the same class:

Class Prepare Event

■ Only with other members of this group, at the same location and in the same
thread:

Breakpoint Event

40 KVM Debug Wire Protocol (KDWP) • December, 2002

Event Data

TABLE 41 Structure of Composite Event Data

byte suspendPolicy Which threads were suspended by this
composite event?

int events Events in set.

Repeated events times:

byte eventKind Event kind selector

Case Breakpoint - if eventKind is
KDWP.EventKind.BREAKPOINT:

Notification of a breakpoint in the target VM.
The breakpoint event is generated before the
code at its location is executed.

int requestID Request that generated event

threadID thread Thread that hit breakpoint

location location Location hit

Case ClassPrepare - if eventKind is
KDWP.EventKind.CLASS_PREPARE:

Notification of a class prepare in the target
VM. See the Java™ Virtual Machine Specification
for a definition of class preparation. Class
prepare events are not generated for primitive
classes (for example,
java.lang.Integer.TYPE).

int requestID Request that generated event

threadID thread Preparing thread. In rare cases, this event
might occur in a debugger system thread
within the target VM. Debugger threads take
precautions to prevent these events, but they
cannot be avoided under some conditions,
especially for some subclasses of
java.lang.Error. If the event was generated
by a debugger system thread, the value
returned by this method is NULL, and if the
requested suspend policy for the event was
EVENT_THREAD all threads are suspended
instead, and the composite event's suspend
policy reflects this change. Note that this does
not apply to system threads created by the
target VM during its normal (non-debug)
operation.

byte refTypeTag Kind of reference type. See KDWP.TypeTag

referenceTypeID typeID Type being prepared

string signature Type signature

int status Status of type. See KDWP.ClassStatus

Chapter 11 Event Command Set 41

Reply Data

For Breakpoint type events, returns the byte opcode that was originally in the
location that currently has the breakpoint.

Case Midlet Death – if eventKind is
KDWP.EventKind.MIDLET_DEATH

Notification of a completed midlet in the target
VM. The notification is generated by the dying
midlet before it terminates.

Int RequestID Request that generated event.

String MidletName JNI signature of the dying Midlet.

TABLE 42 Structure of Reply Data for Composite Command

Byte Opcode Original opcode that was at the breakpoint.

TABLE 41 Structure of Composite Event Data

42 KVM Debug Wire Protocol (KDWP) • December, 2002

43

CHAPTER 12

Vendor Specific Command Set

This command set is numbered (128) to match the equivalent JDWP command set.

▼ Handshake Command (1)
Used to initialize communication between the Debug Agent (DA) and the KVM.
The KVM determines if the DA is the correct one for this particular KVM. If so,
then the KVM replies with a 32-bit bitfield that indicates any optional JDWP
commands that the KVM is able to parse directly (meaning that the DA can pass
these JDWP commands directly to the KVM without parsing/managing them).
Whether out data or reply, if the ID string is the NULL string (its length is 0) then
the receiver of the ID string ignores it.

Out Data

TABLE 43 Structure of Out Data for Handshake Command

String Identifier Vendor specific ID string

byte Major Version The major version of the Debug Agent.

Byte Minor Version The minor version of the Debug Agent.

44 KVM Debug Wire Protocol (KDWP) • December, 2002

Reply Data

TABLE 44 Structure of Reply Data for Handshake Command

String Identifier Vendor specific ID string.

int Optional commands 32-bit bitfield that describes the optional JDWP
commands that the KVM supports. This set of
bits is in 'Network Order' (Big Endian) format.

Bit 0 VM Init event KVM supports/sends VM_INIT event.

Bit 1 VM Death KVM supports/sends VM_DEATH event

Bit 2 Method Entry Event KVM supports/sends METHOD_ENTRY event

Bit 3 Method Exit Event KVM supports/sends METHOD_EXIT event

Bit 4 Exception Event KVM supports/sends EXCEPTION event

Bit 5 Exception Catch Event KVM supports/sends EXCEPTION_CATCH event

Bit 6 Class Load Event KVM supports/sends CLASS_LOAD event

Bit 7 Class unload Event KVM supports/sends CLASS_UNLOAD event

Bit 8 Single Step Event KVM supports/sends SINGLE_STEP event

Bit 9 Thread start Event KVM supports/sends THREAD_START event

Bit 10 Thread death Event KVM supports/sends THREAD_DEATH event

Bit 11 Frame pop Event KVM supports/sends FRAME_POP event

Bit 12 Field Access Event KVM supports/sends FIELD_ACCESS event

Bit 13 Field modification Event KVM supports/sends FIELD_MODIFICATION
event

Bit 14 Event management If set then the KVM keeps a list of events that
have been set by the debugger and does not need
the debug agent to return the breakpoint opcode
after a breakpoint event.

45

APPENDIXA

Constants

▼ ClassStatus Constants

▼ ThreadStatus Constants

TABLE 45 ClassStatus Constants

PREPARED 2

VERIFIED 1

INITIALIZED 4

ERROR 8

TABLE 46 ThreadStatus Constants

RUNNING 1

WAIT 4

SLEEPING 2

ZOMBIE 0

MONITOR 3

46 KVM Debug Wire Protocol (KDWP) • December, 2002

▼ TypeTag Constants

▼ Tag Constants

TABLE 47 TypeTag Constants

CLASS 1 ReferenceType is a class.

INTERFACE 2 ReferenceType is an interface.

ARRAY 3 ReferenceType is an array.

TABLE 48 Tag Constants

ARRAY 91 '[' - an array object (objectID size).

BYTE 66 'B' - a byte value (1 byte).

CHAR 67 'C' - a character value (2 bytes).

OBJECT 76 'L' - an object (objectID size).

FLOAT 70 'F' - a float value (4 bytes).

DOUBLE 68 'D' - a double value (8 bytes).

INT 73 'I' - an int value (4 bytes).

LONG 74 'J' - a long value (8 bytes).

SHORT 83 'S' - a short value (2 bytes).

VOID 86 'V' - a void value (no bytes).

BOOLEAN 90 'Z' - a boolean value (1 byte).

STRING 115 's' - a String object (objectID size).

THREAD 116 't' - a Thread object (objectID size).

THREAD_GROUP 103 'g' - a ThreadGroup object (objectID size).

CLASS_LOADER 108 'l' - a ClassLoader object (objectID size).

CLASS_OBJECT 99 'c' - a class object object (objectID size).

Appendix A Constants 47

▼ Error Constants
TABLE 49 Error Constants

INVALID_TAG 500 object type id or class tag

ALREADY_INVOKING 502 previous invoke not complete

INVALID_INDEX 503

INVALID_LENGTH 504

INVALID_STRING 506

INVALID_CLASS_LOADER 507

INVALID_ARRAY 508

TRANSPORT_LOAD 509

TRANSPORT_INIT 510

NATIVE_METHOD 511

INVALID_COUNT 512

VM_DEAD 112

INVALID_MONITOR 50

OUT_OF_MEMORY 110

INVALID_SLOT 35

INVALID_CLASS_FORMAT 60

INVALID_THREAD 10

INTERRUPT 52

NOT_MONITOR_OWNER 51

CIRCULAR_CLASS_DEFINITION 61

ACCESS_DENIED 111

INVALID_FIELDID 25

TYPE_MISMATCH 34

OPAQUE_FRAME 32

CLASS_NOT_PREPARED 22

FAILS_VERIFICATION 62

INVALID_METHODID 23

INVALID_CLASS 21

48 KVM Debug Wire Protocol (KDWP) • December, 2002

INVALID_OBJECT 20

ADD_METHOD_NOT_IMPLEMENTED 63

NULL_POINTER 100

DUPLICATE 40

INVALID_FRAMEID 30

UNATTACHED_THREAD 115

THREAD_NOT_SUSPENDED 13

INVALID_LOCATION 24

INVALID_TYPESTATE 65

THREAD_SUSPENDED 14

ABSENT_INFORMATION 101

INVALID_THREAD_GROUP 11

INTERNAL 113

NONE 0

INVALID_PRIORITY 12

ILLEGAL_ARGUMENT 103

SCHEMA_CHANGE_NOT_IMPLEMENTED 64

INVALID_EVENT_TYPE 102

NOT_CURRENT_FRAME 33

NOT_IMPLEMENTED 99

NO_MORE_FRAMES 31

NOT_FOUND 41

TABLE 49 Error Constants

Appendix A Constants 49

▼ EventKind Constants

▼ SuspendStatus Constants

TABLE 50 EventKind Constants

VM_START 90

THREAD_DEATH 7

METHOD_EXIT 41

EXCEPTION_CATCH 30

USER_DEFINED 5

METHOD_ENTRY 40

VM_DEATH 99

CLASS_UNLOAD 9

CLASS_PREPARE 8

SINGLE_STEP 1

FIELD_MODIFICATION 21

CLASS_LOAD 10

THREAD_START 6

FRAME_POP 3

VM_INIT 90

BREAKPOINT 2

THREAD_END 7

FIELD_ACCESS 20

EXCEPTION 4

MIDLET_DEATH 100

TABLE 51 SuspendStatus Constants

SUSPEND_STATUS_SUSPENDED 0x1

50 KVM Debug Wire Protocol (KDWP) • December, 2002

▼ SuspendPolicy Constants
TABLE 52 SuspendPolicy Constants

NONE 0 Suspend no threads when this event is encountered.

EVENT_THREAD 1 Suspend the event thread when this event is encountered.

ALL 2 Suspend all threads when this event is encountered.

	KVM Debug Wire Protocol (KDWP)
	Contents
	Preface
	Who Should Use This Specification
	Version History
	Related Literature
	Acknowledgements

	Introduction
	1.1 Architectural Overview
	1.2 KDWP Packets
	1.3 Command and Reply Packet Fields
	1.4 Protocol details
	VirtualMachine command set (1)
	ReferenceType command set (2)
	ClassType command set (3)
	ObjectReference command set (9)
	StringReference command set (10)
	ThreadReference command set (11)
	ArrayReference command set (13)
	EventRequest command set (15)
	StackFrame command set (16)
	Event Command Set (64)
	KVM Vendor Specific Command set (128)

	VirtualMachine Command Set
	AllClasses Command (3)
	AllThreads Command (4)
	Suspend Command (8)
	Resume Command (9)
	Exit Command (10)

	ReferenceType Command Set
	GetValues Command (6)

	ClassType Command Set
	Superclass Command (1)
	SetValues Command (2)

	ObjectReference Command Set
	ReferenceType Command (1)
	GetValues Command (2)
	SetValues Command (3)

	StringReference Command Set
	Value Command (1)

	ThreadReference Command Set
	Name Command (1)
	Suspend Command (2)
	Resume Command (3)
	Status Command (4)
	Frames Command (6)
	FrameCount Command (7)
	Stop Command (10)
	SuspendCount Command (12)

	ArrayReference Command Set
	Length Command (1)
	GetValues Command (2)
	SetValues Command (3)

	EventRequest Command Set
	Set Command (1)
	Clear Command (2)
	ClearAllBreakpoints Command (3)

	StackFrame Command Set
	GetValues Command (1)
	SetValues Command (2)

	Event Command Set
	Composite Command (100)

	Vendor Specific Command Set
	Handshake Command (1)

	Constants
	ClassStatus Constants
	ThreadStatus Constants
	TypeTag Constants
	Tag Constants
	Error Constants
	EventKind Constants
	SuspendStatus Constants
	SuspendPolicy Constants

